Ackancec **Nachine** Learning For Design

Lecture 2 - Machine Learning and Natural Language Processing / Part 1

Module 1

Evangelos Niforatos

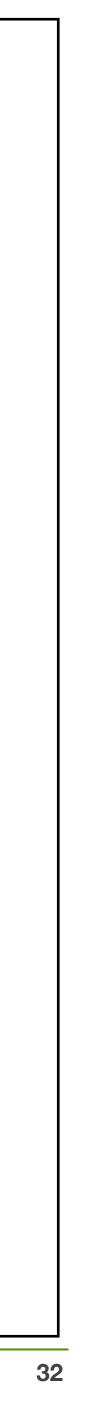
27/09/2023

aml4d-ide@tudelft.nl https://aml4design.github.io

Natural Language Processing

- A sub-field of AI and machine learning in which machines learn to understand natural language as spoken and written by humans
- Goals:
 - Recognize the language, understand it, and respond to it
 - Categorise textual content (e.g. spam vs. Not-spam)
 - Translate between languages
 - Generate new text

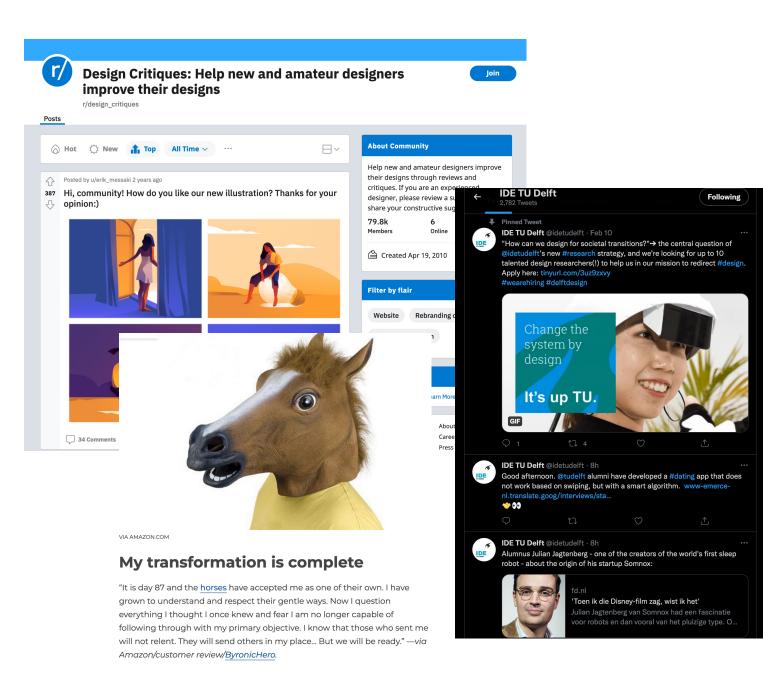
An enabler for technology such as chatbots and digital assistants like Siri or Alexa



Why natural language processing?

And why is it a hard problem?

Fora, social media, blog, products review



Books (digital, or digitised)

Frequently Viewed or Downloaded

These listings are based on the number of times each eBook gets downloaded. Multiple downloads from the same Internet address on the same day count as one download, and addresses that download more than 100 eBooks in a day are considered robots and are not counted

- Downloaded Books 2022-02-27 156396 last 7 days 1167285 last 30 days 4234525
- Top 100 EBooks yesterday
- <u>Top 100 Authors yesterday</u>
- <u>Top 100 EBooks last 7 days</u>
- Top 100 Authors last 7 days
- <u>Top 100 EBooks last 30 days</u>
- <u>Top 100 Authors last 30 days</u>

Top 100 EBooks yesterday

Interviews

Interviewee: XXX Interviewer: XXX Date of Interview: mm.dd.yy Location of Interview: XXX List of Acronyms: FP=Frank Peterson, IN=Interviewer

[Begin Transcript 00:00:10]

IN: So what was going on in your life when you joined the Marines?

FP: Well when I joined the navy, actually that was in 1950 at the age of 18. Not much other than the fact that I wanted to get away from Topeka and see what the rest of world was really all about.

IN: Um-hm.

[00:00:26]

And of course having... gone through the flight training I received my wings and commission in October of 1952. And the- one of the reasons I opted for the Marines, I knew there had never been a black pilot in the Marine Corps. So I wanted to see if I could achieve that goal, which I was able to do.

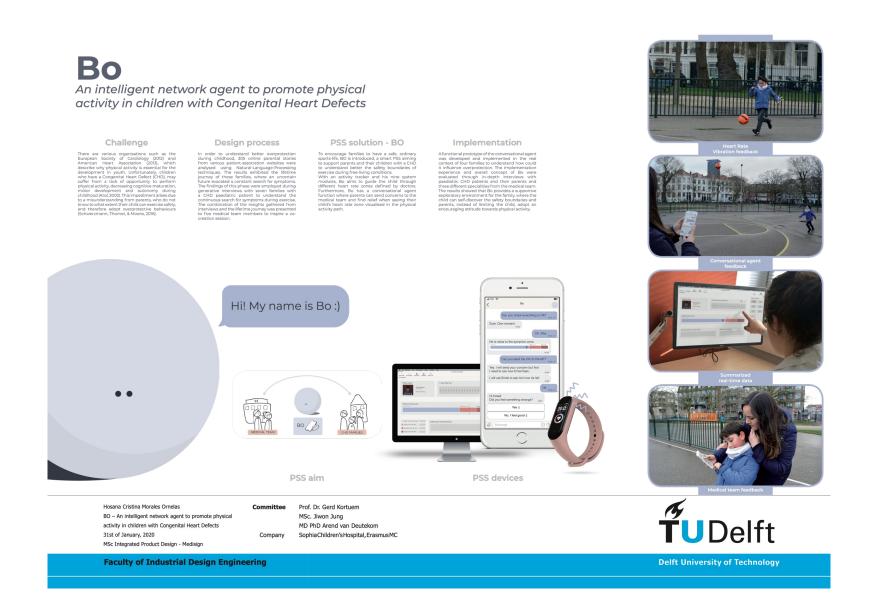
And then my first duty assignment would have been in Cherry Point, North Carolina. But I'd had enough of the South and decided I wanted to stay away from the South if I possibly could, so Headquarters Marine Corps, at my request, changed my orders to El Toro, El Toro, California.

But what I didn't realize is that I'd jumped from the frying pan into the fire because El Toro was the training base for replacement pilots in Korea. So I jumped from the frying pan into the Korean War via El Toro.

IN: I see.

[End Transcript 00:01:21]

Bo: An intelligent network agent to promote physical activity in children with Congenital Heart Defects



- Analysis of how parents perceive their baby, their behaviours towards their child, and thus understand how does overprotection develops throughout childhood
- >300 stories, manually and NLP analysis

http://resolver.tudelft.nl/uuid:fd895415-c353-41d5-8430-f0a67fd40ad4

Big Textual Data = Language at scale

- One of the largest reflections of the world, a man-made one
- Essential to better understand people, organisations, products, services, systems
 - and their relationships!
- Language is a proxy for human behaviour and a strong signal of individual characteristics
 - Language is always situated
 - Language is also a political instrument

Why NLP?

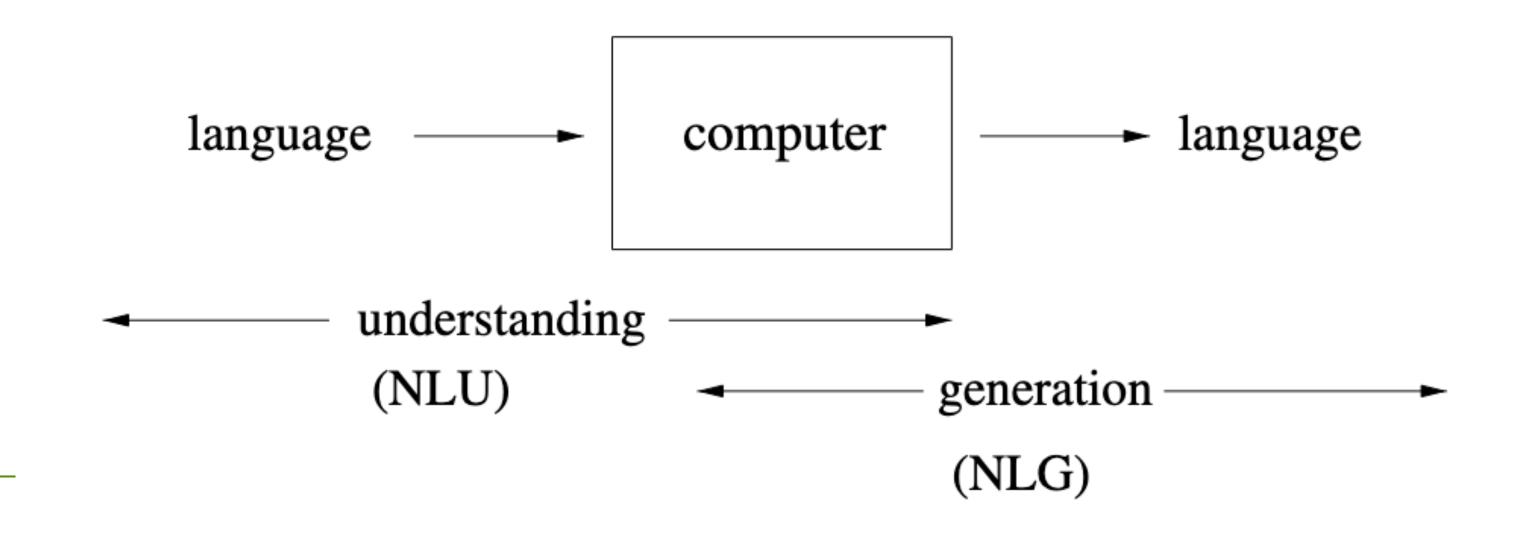
- Answer questions using the Web
- Translate documents from one language to another
- Do library research; summarize
- Archive and allow access to cultural heritage
- Interact with intelligent devices
- Manage messages intelligently
- Help make informed decisions
- Follow directions given by any user
- Fix your spelling or grammar

- Grade exams
- Write poems or novels
 - Listen and give advice
 - Estimate public opinion
 - Read everything and make predictions
 - Interactively help people learn
 - Help disabled people
 - Help refugees/disaster victims
 - Document or reinvigorate indigenous languages

Natural Language Processing

Computers using natural language as input and/or output

Natural: human communication, unlike e.g., programming languages **anguage:** signs, meanings, and a code connecting signs with their meanings



- **Processing:** computational methods to allow computers to `understand', or to generate

Go beyond keyword matching

- Deep understanding of broad language

Identify the structure and meaning of words, sentences, texts and conversations

38

NLP is hard

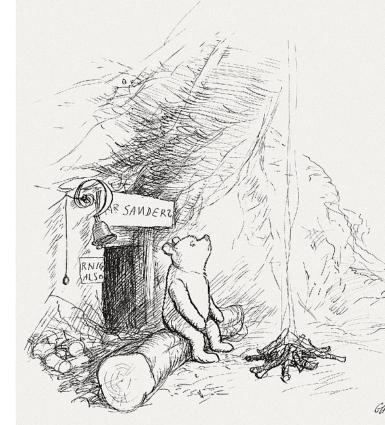
- Human languages are messy, ambiguous, and ever-changing
 - A string may have many possible interpretations at every level
 - The correct resolution of the ambiguity will depend on the intended meaning, which is often inferable from the context
- There is tremendous diversity in human languages
 - Languages express the same kind of meaning in different ways
 - Some languages express some meanings more readily/often
- Knowledge Bottleneck
 - Knowledge about language
 - Knowledge about the world
 - Common sense
 - Reasoning

anguages ing in different ways nore readily/often

Ambiguity and Expressivity

Christopher Robin is alive and well. He is the same person that you read about in the book, Winnie the Pooh. As a boy, Chris lived in a pretty home called Cotchford Farm. When Chris was three years old, his father wrote a poem about him. The poem was printed in a magazine for others to read. Mr. Robin then wrote a book

Who wrote Winnie the Pooh?
 Where did Chris live?



Sparsity

- Zipf's Law: The distribution of word frequenc very skewed
- "... given some document collection, the fre of any word is inversely proportional to its intersection the frequency table..."
- The most frequent word will occur approximately t as often as the second most frequent word, which occurs twice as often as the fourth most frequent etc.
 - Regardless of how large our corpus is, there w a lot of infrequent words
- This means we need to find clever ways to estimate value of words that we have rarely (or never) seed

		any	word		nouns			
		Frequency	Token	Frequency	Token			
		1,698,599	the	124,598	European			
		849,256	of	104,325	\mathbf{Mr}			
		793,731	to	92,195	Commission			
		640,257	and	66,781	President			
cies is		508,560	in	62,867	Parliament			
		407,638	that	57,804	Union			
		400,467	is	53,683	report			
		394,778	a	53,547	Council			
equency rank in		263,040	Ι	45,842	States			
		Word	s order	ed by their fr	requency			
	107	English		107	Spanish			
twice h word,	10 ⁶ 10 ⁵ 10 ⁴ 10 ⁴ 10 ³ 10 ²			10 ⁶ 10 ⁵ Sound 10 ⁴ 10 ³ 10 ²				
vill be	$ \begin{array}{c c} 10^{1} \\ 10^{0} \\ 10^{0} \\ 10^{0} \\ 10^{1} \end{array} $	10 ² 10 ³ 10 ⁴ Rank	10 ⁵ 10 ⁶	$ \begin{array}{c} 10^{1} \\ 10^{0} \\ 10^{0} \\ 10^{0} \\ 10^{0} \end{array} $	0 ¹ 10 ² 10 ³ 10 ⁴ 10 ⁵ Rank			
ate the en	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Finnish	10⁵ 10⁶	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	German			

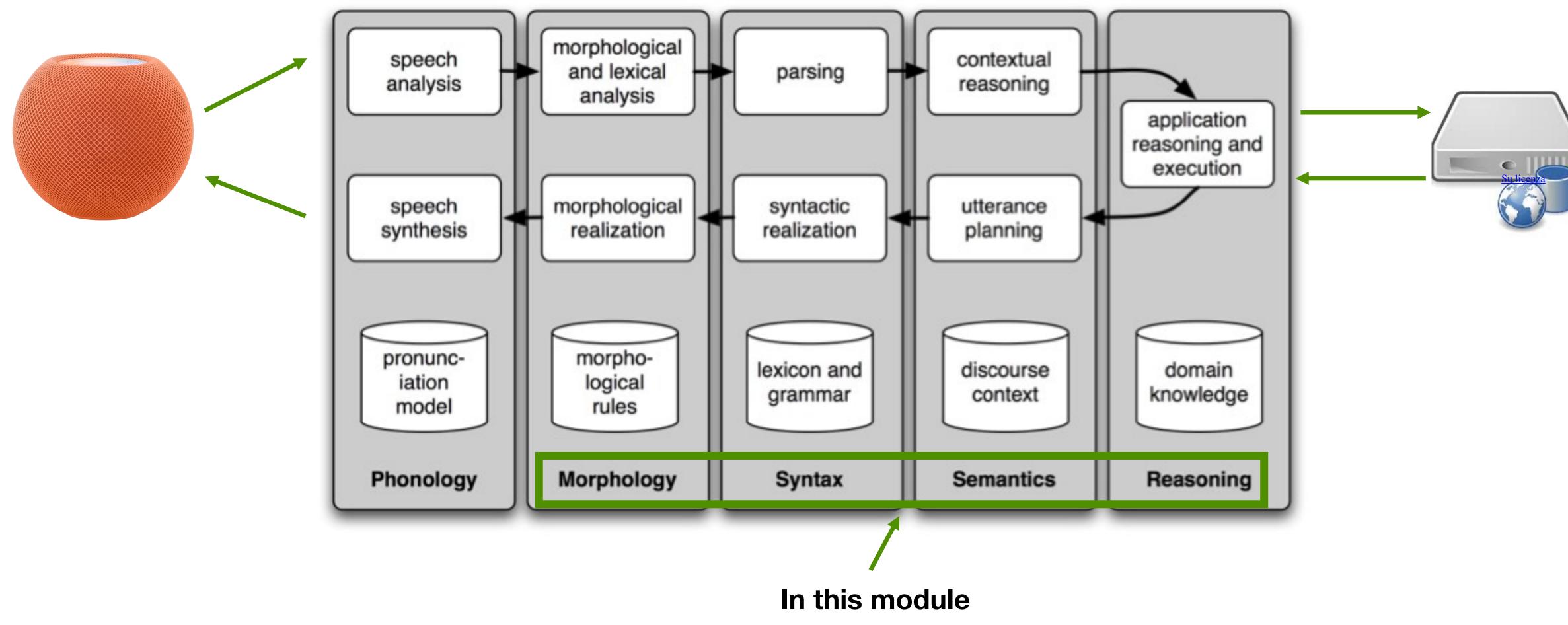
41

Language evolves

LOL	Laugh ou
G2G	Got to g
BFN	Bye for n
B4N	Bye for n
ldk	I don't kr
FWIW	For what
LUWAMH	Love you heart

ut loud OW OW now it's worth J with all my

An Example of NLP Process - Smart Speakers



Language

Levels of Linguistic Representation

- The mapping between levels is hard
- Appropriateness of representation depends on the application

Discourse **Pragmatics Semantics Syntax**

Lexemes / Lexical Items

Morphology

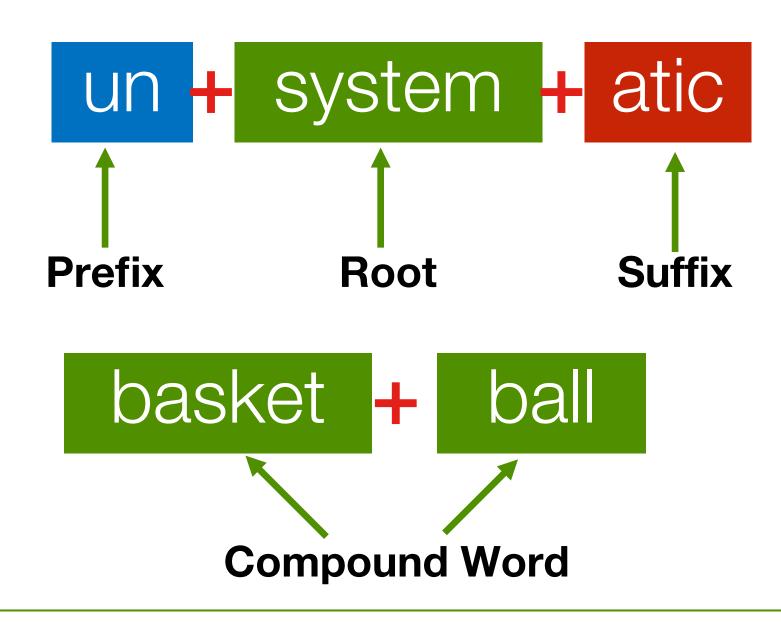
deeper

shallower

45

Morphology

- Words are the atomic elements in a language
- Many words have an internal structure that shapes their meaning
- Morphology analysis: split words into meaningful components
 - The structure of words
 - Useful for orthographic error correction

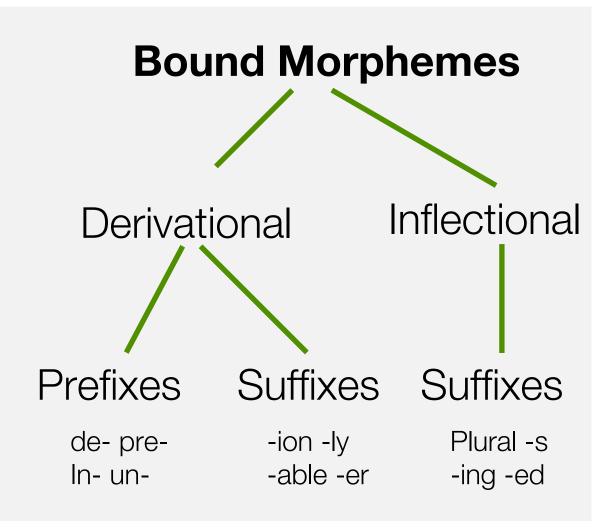


their meaning omponents

Free Morphemes

Can stand alone as own word

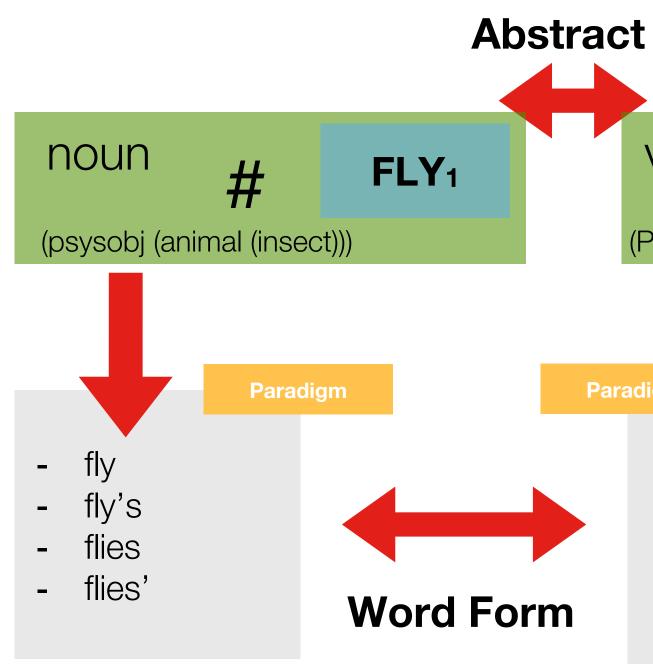
Dog, gentle, picture, gem



stem	walk	kiss	map	cry
-s form	walk <mark>s</mark>	kiss <mark>es</mark>	map <mark>s</mark>	cries
-ing participle	walk <mark>ing</mark>	kiss <mark>ing</mark>	map <mark>ping</mark>	cry <mark>ing</mark>
Past form or -ed participle	walk <mark>ed</mark>	kiss <mark>ed</mark>	map <mark>ped</mark>	cried

Lexemes

- A fundamental unit of the lexicon of a language
 - An abstract vocabulary item which may be realised in different sets of grammatical variants
- The same word can have multiple meanings:
 - bank, mean
 - Extra challenge: domain-specific meanings



verb X FLY₂ (PTRANS (from ... to)) Paradigm word-family flyer fly flyable flies -- no-fly - flying Flew -- flown

47

Lexical Items

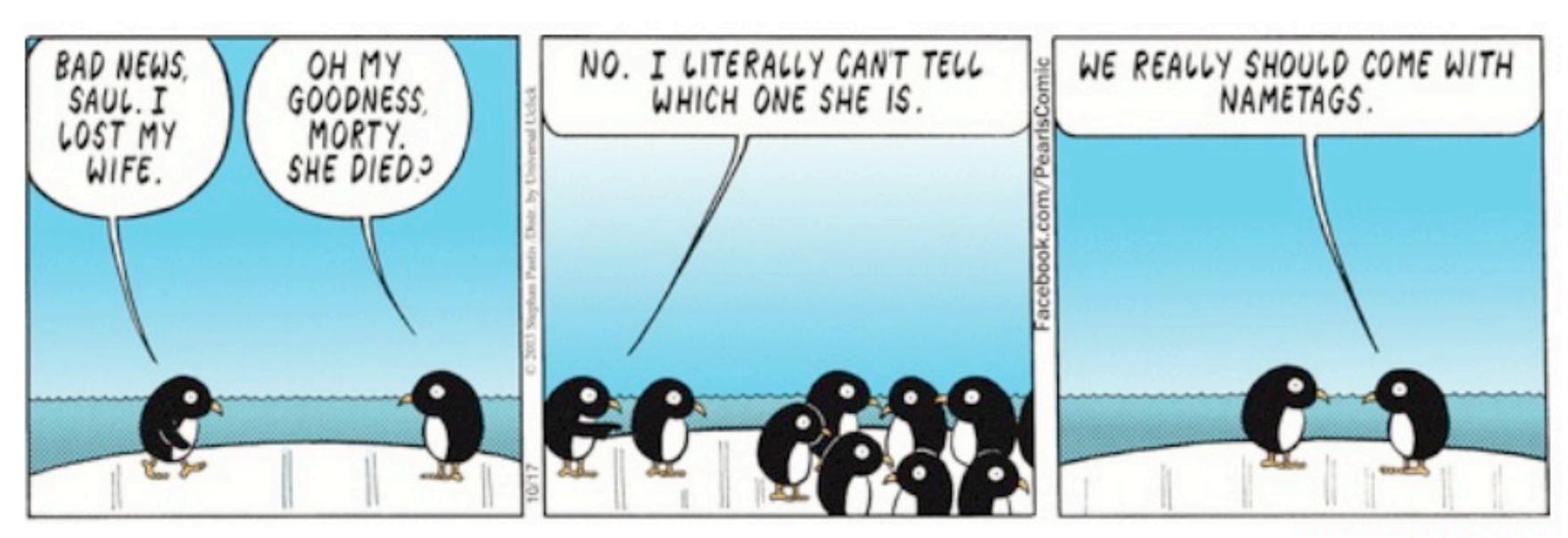
- Examples of lexical items
 - Lexemes (previous slide)
 - Phrasal verbs, e.g. put off, get out
 - Multiword expressions, e.g. by the way, inside out
 - **Idioms**, e.g. *break a leg*, *a bitter pill to swallow*
 - **Sayings**, e.g. *The early bird gets the worm*, *The devil is in the details*

A single word, a part of a word, or a chain of words that forms the basic elements of a language's lexicon

48

Lexical Ambiguity

The presence of two or more possible meanings within a single word Word sense ambiguity



credit: A. Zwicky

49

Part Of Speech

The syntactic role of each word in a sentence

	Tag	Description	ł
	ADJ	Adjective: noun modifiers describing properties	1
Class	ADV	Adverb: verb modifiers of time, place, manner	ı
U	NOUN	words for persons, places, things, etc.	0
Open	VERB	words for actions and processes	a
õ	PROPN	Proper noun: name of a person, organization, place, etc	ŀ
	INTJ	Interjection: exclamation, greeting, yes/no response, etc.	0
	ADP	Adposition (Preposition/Postposition): marks a noun's	i
s		spacial, temporal, or other relation	
Class Words	AUX	Auxiliary: helping verb marking tense, aspect, mood, etc.,	C
×	CCONJ	Coordinating Conjunction: joins two phrases/clauses	a
ass	DET	Determiner: marks noun phrase properties	0
	NUM	Numeral	0
sed	PART	Particle: a preposition-like form used together with a verb	ı
Closed	PRON	Pronoun: a shorthand for referring to an entity or event	\$
Ŭ	SCONJ	Subordinating Conjunction: joins a main clause with a subordinate clause such as a sentential complement	t
EL CL	PUNCT	Punctuation	;
Other	SYM	Symbols like \$ or emoji	\$
U	Х	Other	а

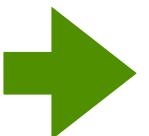
Example

red, young, awesome very, slowly, home, yesterday algorithm, cat, mango, beauty draw, provide, go Regina, IBM, Colorado oh, um, yes, hello in, on, by, under

can, may, should, are and, or, but a, an, the, this one, two, first, second up, down, on, off, in, out, at, by she, who, I, others that, which

; , () \$, % asdf, qwfg

Always created



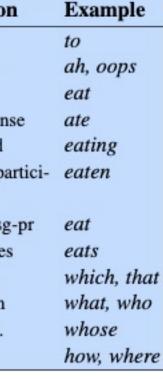
Relatively fixed

50

Part-Of-Speech /2

- **Nouns (NN, NNS)**: words for people, places, or things. Singular or plural
 - cat, mango, algorithm, beauty, pacing
- **Proper Nouns (NNP, NNPS):** names of **specific persons** or **entities**
 - Evangelos, Delft, TU Delft
- Adjectives: describe the properties or qualities of nou
 - e.g. colour (*white*, *black*), age (*old*, *young*), value (
- **Verbs (VB)**: actions and processes
 - Multiple inflexions for singular/plural and verb tense
- **Adverbs (ADV)**: used to modify other terms (not only
 - Directional, degree, manner, temporal, some simila
- **Personal and Possessive Pronouns (PRP)**: shorthand for referring to an entity or event
 - you, she, I, it, me, my, your, his, her, its, one's, our, their
- Wh-pronouns: used in questions
 - what, who, whom, whoever

uns	Tag	Description	Example	Tag	Description	Example	Tag	Description
UNS	CC	coord. conj.	and, but, or	NNP	proper noun, sing.	IBM	TO	"to"
	CD	cardinal number	one, two	NNPS	proper noun, plu.	Carolinas	UH	interjection
(good, bad)	DT	determiner	a, the	NNS	noun, plural	llamas	VB	verb base
	EX	existential 'there'	there	PDT	predeterminer	all, both	VBD	verb past tens
	FW	foreign word	mea culpa	POS	possessive ending	's	VBG	verb gerund
	IN	preposition/	of, in, by	PRP	personal pronoun	I, you, he	VBN	verb past par
		subordin-conj						ple
e	JJ	adjective	yellow	PRP\$	possess. pronoun	your, one's	VBP	verb non-3sg-
	JJR	comparative adj	bigger	RB	adverb	quickly	VBZ	verb 3sg pres
(vorbe)	JJS	superlative adj	wildest	RBR	comparative adv	faster	WDT	wh-determ.
v verbs)	LS	list item marker	1, 2, One	RBS	superlatv. adv	fastest	WP	wh-pronoun
	MD	modal	can, should	RP	particle	up, off	WP\$	wh-possess.
ar to nouns	NN	sing or mass noun	llama	SYM	symbol	+,%, &	WRB	wh-adverb



Syntax

- grammatically acceptable by fluent speakers
- Basic syntactical elements (there are more)
 - **Constituents:** atomic tokens made up of a group of words
 - Noun Phrase (NP)
 - groups made up of nouns, determiners, adjectives, conjunctions
 - e.g the big house, a red and large carpet
 - Verb Phrase (VP)
 - A verb eventually followed by an NP or a prepositional phrase (PP)
 - e.g. eat (verb), eat a pizza (verb + NP), eat a pizza with the fork (verb + NP + PP)
 - OBJECTS
 - es.[he]/SUBJECT took [thebighammer]/OBJECT

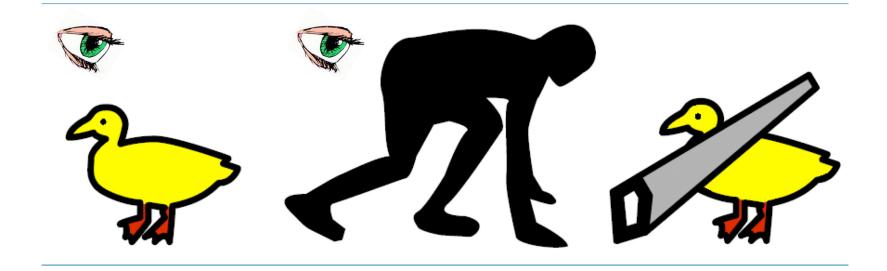
The syntax of a language is the set of principles (**rules**) under which sequences of words are judged to be

Grammatical Relations: formalization of the sentence structure as a link between SUBJECTS and

Syntactic Ambiguity

- sequence of words
- They can be solved only at the semantic (or higher) level
 - Using statistical or semantic knowledge

I saw her duck



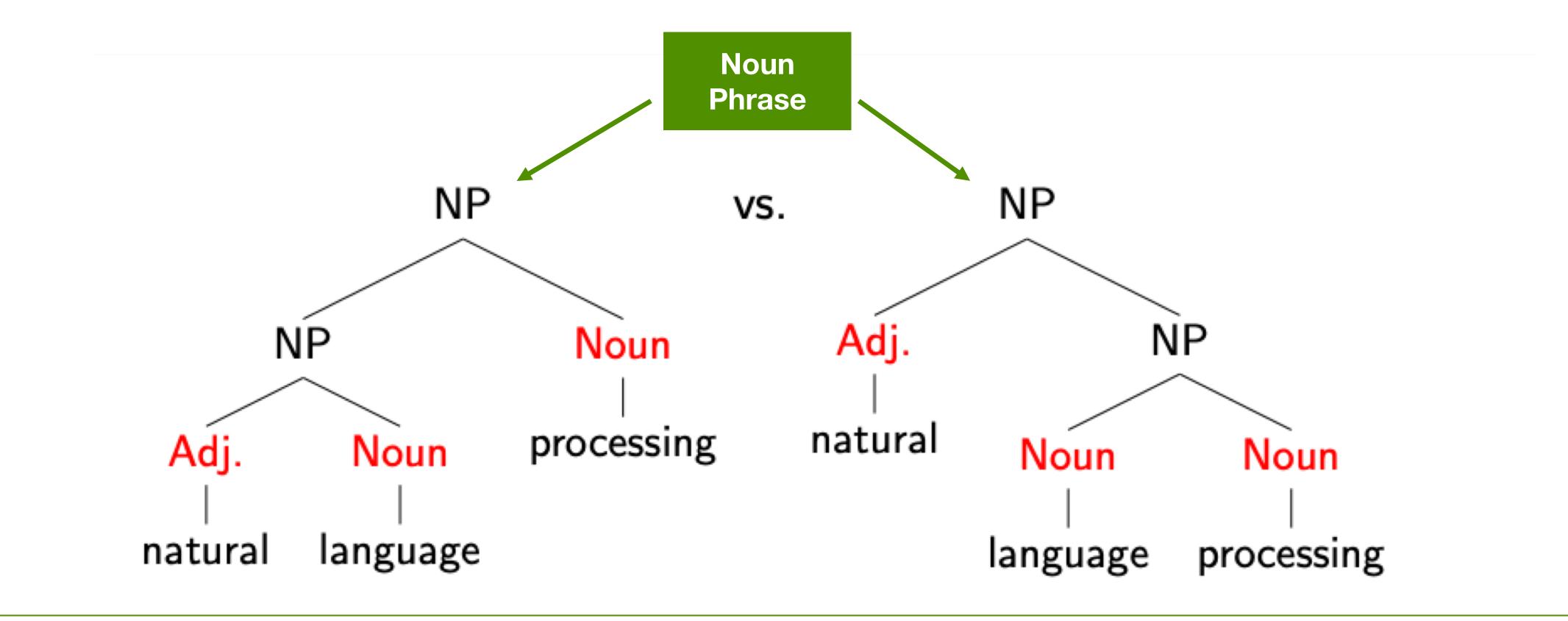
The presence of two or more possible meanings within a single sentence or

I saw the Grand Canyon <u>flying</u> to New York

Clearly the grand canyon does not fly....

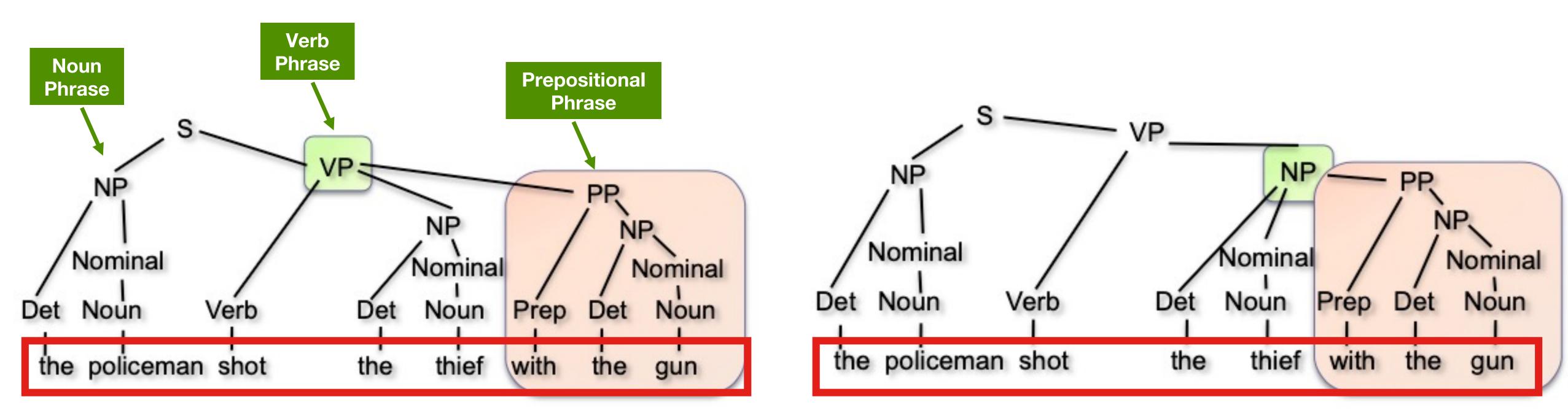
Syntactic Ambiguity

Different structures lead to different interpretations



Attachment Ambiguity

The policeman shot the thief with the gun



The policeman used the gun to shoot the thief

The policeman shot a thief that had a gun

Pronoun reference ambiguity

https://www.printwand.com/blog/8-catastrophic-examples-of-word-choice-mistakes

Dr. Macklin often brings his dog Champion to visit with the patients. He just loves to give big, wet, sloppy kisses!

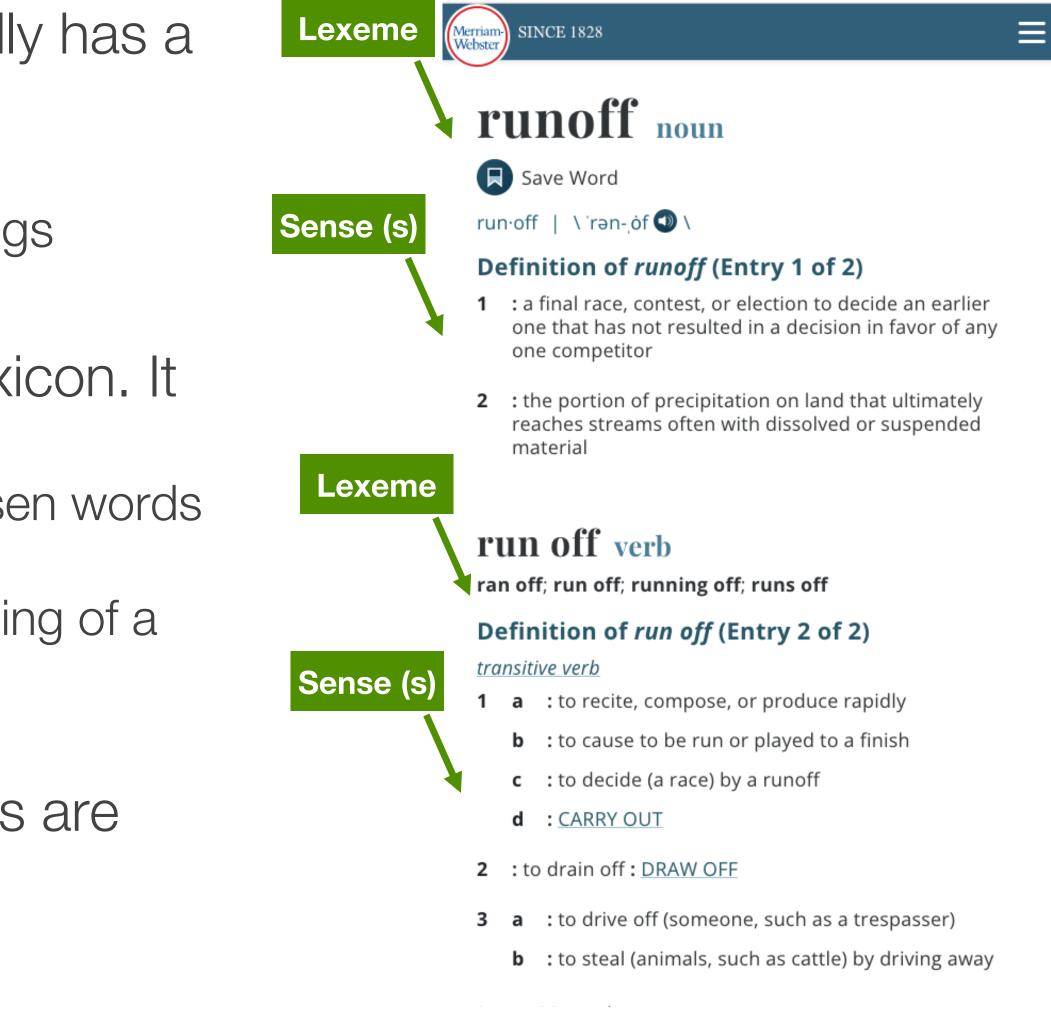
Semantics

- sentences (compositional semantics)
- Mapping of natural language sentences into domain representations
 - E.g., a robot command language, a database query, or an expression in a formal logic

The study of the meaning of words (lexical semantics), and how these combine to form the meanings of

Lexical Semantics

- A lexicon (the vocabulary of a language) generally has a highly structured form
 - It stores the meanings and uses of each word
 - It encodes the relations between words and meanings
- A lexeme is a minimal unit represented in the lexicon. It pairs
 - A stem: the orthographic (or phonological) form chosen words (or, sometimes a lexical item)
 - A sense: a representation of one aspect of the meaning of a word
- A dictionary is a type of lexicon where meanings are expressed through definitions and examples



Lexical and semantic relations among words (senses)

Homonymy

- Lexemes that have the **same form** (and the same PoS) but unrelated meanings
- e.g. bank (the financial institution, the river bank)

Polysemy

- It happens when a lexeme has more related meanings
- It depends on the word etymology unrelated meaning usually have a different origin)
- e.g. bank (the financial institution), bank (the building hosting the financial institution)

Synonymy

- distinct lexemes with the same meaning
- e.g. fall, autumn; gift, present

- Hyponymy / Hypernymy (is-a relation) {parent: hypernym, child: hyponym}
 - A relationship between **two senses** such that one denotes a subclass of the other
 - e.g. dog. animal
 - The relationship is not symmetric
- **Holonomy / Meronymy** (part-whole relation)
 - A relationship between **two senses** such that one Is structurally or logically part of the other
 - E.g. arm -> body (holonomy), bicycle -> wheel (meronymy)
 - The relationship is not symmetric

Antonymy

- A relationship between two senses exists between words that have opposite meaning
- e.g. tall, short

Wordnet

- A hierarchical database of lexical relations
 - More than 200 languages
- Three Separate sub-databases
 - Nouns
 - Verbs
 - Adjectives and Adverbs
- Each lexeme is associated with a set of senses (synse
- Synsets are linked by **conceptual**, **semantic** and lexical relationships

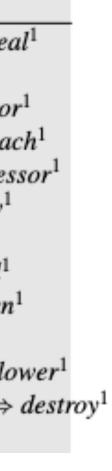
- Available online or for download
 - http://wordnetweb.princeton.edu/perl/webwn

https://wordnet.princeton.edu/documentation/wnstats7wn

POS	Unique	Synsets	Total
	Strings		Word-Sense Pairs
Noun	117798	82115	146312
Verb	11529	13767	25047
Adjective	21479	18156	30002
Adverb	4481	3621	5580
Totals	155287	117659	206941

		Υ.	
\square	Г	1	
	L	1	

Relation	Also Called	Definition	Example
Hypernym	Superordinate	From concepts to superordinates	$break fast^1 \rightarrow mea$
Hyponym	Subordinate	From concepts to subtypes	$meal^1 \rightarrow lunch^1$
Instance Hypernym	Instance	From instances to their concepts	Austen ¹ \rightarrow author
Instance Hyponym	Has-Instance	From concepts to concept instances	$composer^1 \rightarrow Bac$
Member Meronym	Has-Member	From groups to their members	$faculty^2 \rightarrow profes$
Member Holonym	Member-Of	From members to their groups	$copilot^1 \rightarrow crew^1$
Part Meronym	Has-Part	From wholes to parts	$table^2 \rightarrow leg^3$
Part Holonym	Part-Of	From parts to wholes	$course^7 \rightarrow meal^1$
Substance Meronym		From substances to their subparts	water ¹ \rightarrow oxygen
Substance Holonym		From parts of substances to wholes	$gin^1 ightarrow martini^1$
Antonym		Semantic opposition between lemmas	$leader^1 \iff follo$
Derivationally		Lemmas w/same morphological root	$destruction^1 \iff$
Related Form			
Noun Rela ⁻	tions		



Natural language processing tasks

Morphology /1 - Tokenisation

- Separation of words (or of morphemes) in a sentence
- Issues
 - Separators: punctuations
 - Exceptions: "m.p.h", "Ph.D"
 - Expansions: "we're" = "we are"
- Multi-words expressions: "New York", "doghouse"

",Latest figures from the US government show the trade deficit with China reached an all time high of \$ 365.7 bn (£ 250.1 bn) last year . By February this year it had already reached \$ 57 bn ."

Morphology /2

Normalisation

- Sometimes we need to "normalize" terms
- We want to match U.S.A. and USA

Stopword removal

- Removal of high-frequency words, which information
- E.g. determiners, prepositions
- English stop list is about 200-300 terms "a", "about", "otherwise", "the", etc..)

h oorry looo	any	word	nouns		
h carry less	Frequency	Token	Frequency	Token	
	1,698,599	the	124,598	European	
	849,256	of	104,325	Mr	
	793,731	to	92,195	Commission	
(o o "hoop"	640,257	and	66,781	President	
s (e.g., " been ",	508,560	in	62,867	Parliament	
	407,638	that	57,804	Union	
	400,467	is	53,683	report	
	394,778	a	53,547	Council	
	263,040	I	45,842	States	

Morphology /3

Stemming

- Heuristic process that chops off the ends of words in the hope of achieving the goal correctly most of the time
- Stemming collapses derivationally related words
- Two basic types:
 - Algorithmic: uses programs to determine related words
 - Dictionary-based: uses lists of related words

Example of Stemming with Different Algorithms

- *Sample text:* Such an analysis can reveal features that are not easily visible from the variations in the individual genes and can lead to a picture of expression that is more biologically transparent and accessible to interpretation
- *Lovins stemmer:* such an analys can reve featur that ar not eas vis from th vari in th individu gen and can lead to a pictur of expres that is mor biolog transpar and acces to interpres
- **Porter stemmer:** such an analysi can reveal featur that ar not easili visibl from the variat in the individu gene and can lead to a pictur of express that is more biolog transpar and access to interpret
- **Paice stemmer:** such an analys can rev feat that are not easy vis from the vary in the individ gen and can lead to a pict of express that is mor biolog transp and access to interpret

Morphology /4

Lemmatisation

- It uses dictionaries and morphological analysis of words in order to return the base or dictionary form of a word
- Lemmatization collapses the different inflectional forms of a lemma
- Example: Lemmatization of "saw" -> attempts to return "see" or "saw" depending on whether the use of the token is a verb or a noun

Goo
Pkv
phon
said

Goog

Sunda

ogle, headquartered in Mountain View (1600 Amphitheatre vy, Mountain View, CA 940430), unveiled the new Android e for \$799 at the Consumer Electronic Show. Sundar Pichai d in his keynote that users love their new Android phones.

gle	,		quarte		in	Mountair	n Vie	w (1600	Amphi	theatro	e Pkwy	, Mount	ain	١
lar	Ρ	ichai	said say	in	his	keynote	that	user user		their	new	Android	phones phone	·	

Syntax: Part-Of-Speech Tagging

Why do we care?

- Text-to-speech: *record*[v] and *record*[n]
- Lemmatization:
 - $saw[\vee] \rightarrow see$
 - $saw[n] \rightarrow saw$
- As input for many other NLP tasks
 - Chunking
 - Named entity recognition
 - Information extraction

Goc Pkw
phone saic

nsubj										
Google										
NOUN										

1111											
Mountain											
NOUN											

nsubj Google NOUN	p PUNCT		vmod headquartered VERB			prep in ADP	nn Mountain NOUN		pobj Viev NOUI	(num 1600 Ar NUM		nn mphitheatre NOUN		appos Pkwy NOUN PU		СТ
nn	appo		s p		appos		ım	р	13)	roo	ot	det	amod	i nn		dobj	pre
Mounta	ain	Viev	, (CA	940430)	1.0	,	unve	iled	the	new	Andr	oid	phone	fo
NOUN	١	NOU	N PUN	СТ	NOUN	IN NUM		PUNC	T PUI	ОСТ	VER	RB	DET	r adj	NOL	JN	NOUN	AD
pobj	prep	det	t	nn		nn		pobj	р									
\$799	at th		e Con	sum	ner Electronic S		Show .											
NUM	ADP DET		Г N	OUN		NOUN	1	NOUN	PUNC	Т								
nn	n	subj	root	prep	pos	SS	pobj	mar	k ns	ubj	ccom	p p	oss	amod	nn		dobj	
Sundar	Pichai		said	in	hi	s k	eyno	te tha	t us	ers	love	tł	neir	new	Andro	id p	hones	
NOUN N		IOUN	IN VERB ADP		PRO	RON NO		AD	P NO	UN	VERB	P	RON	ADJ	NOUN	V	NOUN	

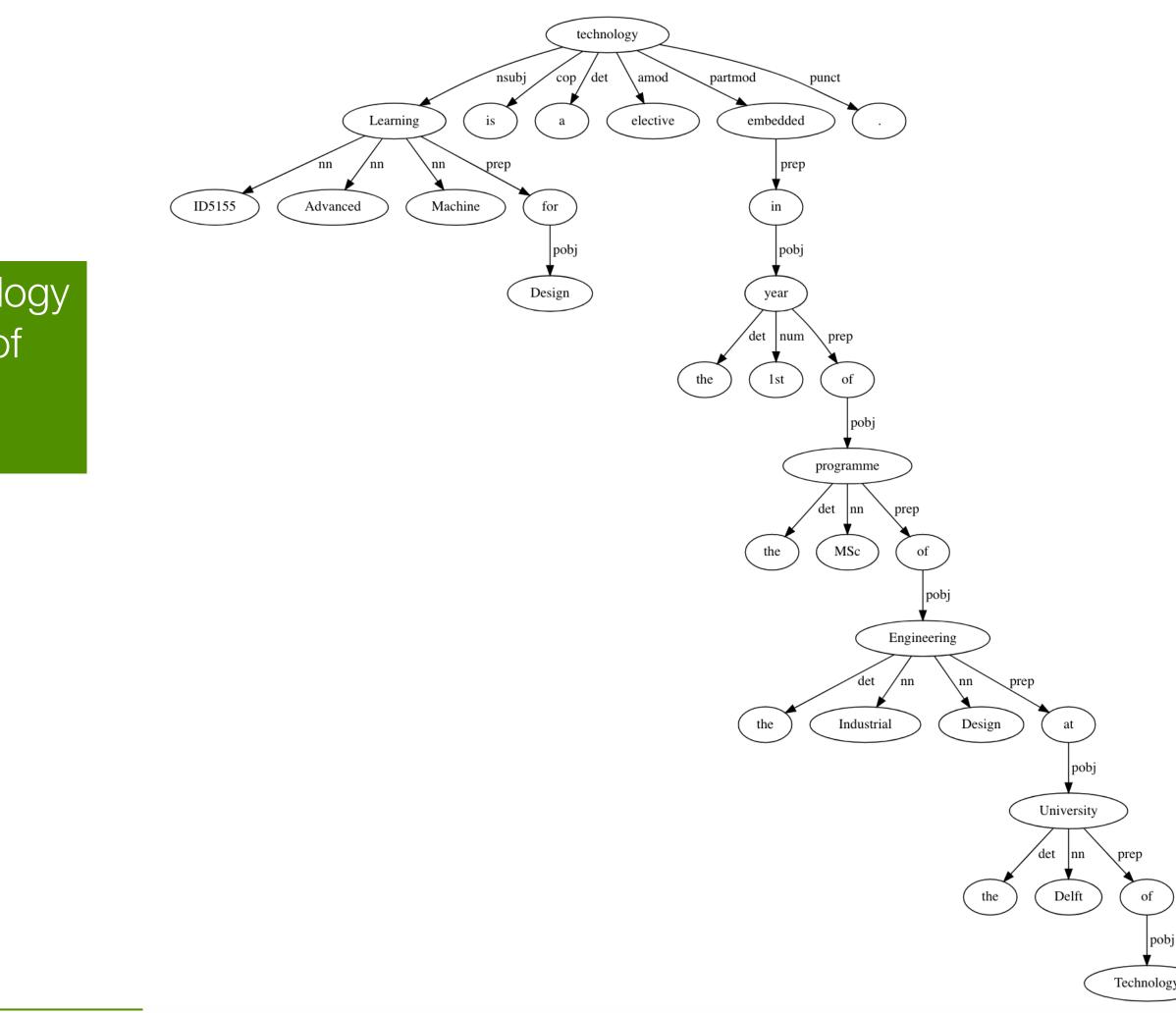
ogle, headquartered in Mountain View (1600 Amphitheatre ry, Mountain View, CA 940430), unveiled the new Android e for \$799 at the Consumer Electronic Show. Sundar Pichai in his keynote that users love their new Android phones.

https://cloud.google.com/natural-language#section-2

Syntax: Dependency Parsing

ID5155 Advanced Machine Learning for Design is a technology elective embedded in the 1st year of the MSc programme of the Industrial Design Engineering at the Delft University of Technology.

https://www.textrazor.com/demo



Syntax: Part-Of-Speech Tagging /2

Helicopters will patrol the temporary no-fly zone around New Jersey's MetLife Stadium Sunday, with F-16s based in Atlantic City ready to be scrambled if an unauthorized aircraft does enter the restricted airspHelicopters will patrol the temporary no-fly zone around New Jersey's MetLife Stadium Sunday, with F-16s based in Atlantic City ready to be scrambled if an unauthorized aircraft does enter the restricted airspace. Down below, bomb-sniffing dogs will patrol the trains and buses that are expected to take approximately 30,000 of the 80,000-plus spectators to Sunday's Super Bowl between the Denver Broncos and Seattle Seahawks.ace. Down below, bomb-sniffing dogs will patrol the trains and buses that are expected to take approximately 30,000 of the 80,000-plus spectators to Sunday's Super Bowl between the Denver Broncos and Seattle Seahawks.

NNPS/ Helicopters MD/ will NN/ patrol DT/ the JJ/ temporary JJ/ no-fly NN/ zone IN/ around NNP/ New NNP/ Jersey POS/ 'S NNP/ MetLife NNP/ Stadium NNP/ Sunday ,/ , IN/ with NNP/ F-16s VBN/ based IN/ in NNP/ Atlantic NNP/ City JJ/ ready TO/ to VB/ be VBN/ scrambled IN/ if DT/ an JJ/ unauthorized NN/ aircraft VBZ/ does VB/ enter DT/ the VBN/ restricted NN/ airspace ./ .

IN/ Down IN/ below ,/ , JJ/ bomb-sniffing NNS/ dogs MD/ will NN/ patrol DT/ the NNS/ trains CC/ and NNS/ buses WDT/ that VBP/ are VBN/ expected TO/ to VB/ take RB/ approximately CD/ 30,000 IN/ of DT/ the JJ/ 80,000-plus NNS/ spectators TO/ to NNP/ Sunday POS/ 'S NNP/ Super NNP/ Bowl IN/ between DT/ the NNP/ Denver NNS/ Broncos CC/ and NNP/ Seattle NNP/ Seahawks ./ .

https://cogcomp.seas.upenn.edu/page/demo_view/pos

Syntax: Named Entity Recognition

- Factual information and knowledge are normally expressed by named entities
 - Who, Whom, Where, When, Which, ...
 - It is the core of the information extraction systems
- **1. Identify** words that refer to **proper names** of interest in a particular application
 - E.g. people, companies, locations, dates, product names, prices, etc.
- **2. Classify** them to the corresponding classes (e.g. person, location)
- **3. Assign** a unique identifier from a database

(Google)1, headquartered in (Mountain View)2 ((1600 Amphitheatre Pkwy, Mountain View, CA)12 (1600)14 (Amphitheatre Pkwy)7, (Mountain View)2, (CA 940430)8 (940430)16), unveiled the new (Android)3 (phone)5 for (\$799)13 (799)15 at the (Consumer Electronic Show)11. (Sundar Pichai)4 said in his (keynote)9 that (users)6 love their new (Android)₃ (phones)₁₀.

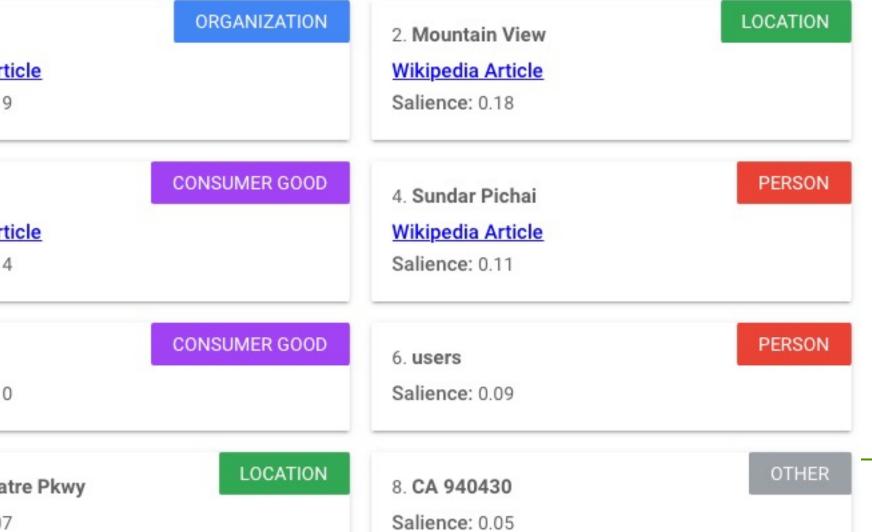
1. Google Wikipedia Article Salience: 0.19

3. Android Wikipedia Article Salience: 0.14

5. phone Salience: 0.10

7. Amphitheatre Pkwy Salience: 0.07

Google, headquartered in Mountain View (1600 Amphitheatre Pkwy, Mountain View, CA 940430), unveiled the new Android phone for \$799 at the Consumer Electronic Show. Sundar Pichai said in his keynote that users love their new Android phones.



https://cloud.google. com/naturallanguage#section-2

69

Document Categorisation / Topic Modeling

- Categorisation
 - assigning a label or category to an entire text or document
 - Supervised learning
 - For instance
 - Spam vs. Not spam
 - Language identification
 - Authors attribution
 - Assigning a library subject category or topic label
- Topic Modeling
 - A topic is the subject or theme of a discourse
 - Topic modeling: group documents/text according to their (semantic) similarity
 - An unsupervised machine learning approach

Welcome to the 2023/2024 Edition of the Advanced Machine Learning for Design Course

The Course

year of the Integrated Product Design (IPD) MSc programme

This advanced technology elective will provide students with the knowledge required to understand, design, and evaluate machine learning systems in the context of the design of intelligent products, services, and systems (iPSSs). Machine Learning (ML) is a computational approach that aims at "giving computers the ability to learn without being explicitly programmed" (A. Samuel, 1959). Smart thermostats, voice-enabled personal assistants, autonomous vehicles, traffic control systems, online social networks, web-shopping platforms, content-creation platforms, personal-health applications are just a few examples of iPSSs powered by ML technology. Consequently, ML technology is influencing, and shaping our interests, habits, lives, and society. To meaningfully envision and design

The elective of ID5515 Advanced Machine Learning for Design (AML4D) is embedded in the 1st

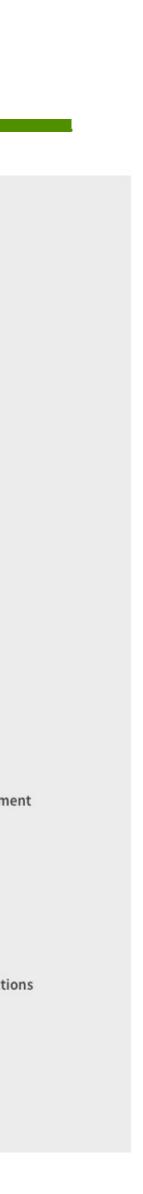
CATEGORIES

- 0.85 science and technology
- 0.58 education
- 0.58 economy, business and finance>economic sector>computing and information technology
- 0.57 society
- 0.54 science and technology>social sciences>psychology
- 0.54 economy, business and finance>economic sector>media
- 0.54 society>values>ethics
- 0.49 education>school>further education
- 0.43 economy, business and finance>economic sector>computing and information technology>software
- 0.43 science and technology>social sciences>philosophy

TOPICS

1.00 Technology

- 1.00 Machine learning
- 1.00 Design
- 1.00 Learning
- 1.00 System
- 1.00 Social networking service
- 1.00 Cognition
- 1.00 Human activities
- 1.00 Branches of science
- 1.00 Communication
- 1.00 Cognitive science
- 1.00 Education
- 0.93 Educational psychology
- 0.93 Self-driving car
- 0.89 Engineering
- 0.85 Systems science
- 0.84 Social network
- 0.84 Computing
- 0.83 Behavior modification
- 0.82 Machine
- 0.82 Concepts in metaphysics
- 0.78 Reason
- 0.77 Neuropsychological assessment
- 0.77 Change
- 0.76 Interdisciplinary subfields
- 0.75 Psychological concepts
- 0.75 Science
- 0.75 World Wide Web
- 0.75 Society
- 0.74 Academic discipline interactions
- 0.73 Experience
- 0.70 Cyberspace
- 0.70 Content creation
- 0.69 Applied psychology
- 0.67 Neuroscience
- 0.67 Bias



70

Syntax: Sentiment Analysis

- The detection of attitudes
 - "enduring, affectively colored beliefs, dispositions towards objects or persons"
- Main elements
 - Holder (source)
 - Target (aspect)
 - Type of attitude
 - Text containing the attitude
- Tasks
 - **Classification**: Is the attitude of the text positive or negative?
 - **Regression**: Rank the attitude of the text from 1 to 5
 - **Advanced**: Detect the target, source, or complex attitude types

Google, headquartered in Mountain View (1600 Amphitheatre Pkwy, Mountain View, CA 940430), unveiled the new Android phone for \$799 at the Consumer Electronic Show. Sundar Pichai said in his keynote that users love their new Android phones.

Entire D

Google, 940430)

Sundar

3. And Sentim

					Score	Magnitude
Document					0.2	0.5
e, headquartered in M 0), unveiled the new /	•				0	0
r Pichai said in his ke	ynote that user	s love their new /	Android phones.		0.5	0.5
Sco	re Range	0.25 — 1.0	-0.25 — 0.25	-1.0 — -0.25		
droid	CONS	UMER GOOD	4. Sundar Pic	4. Sundar Pichai		PERSON
ment: Score 0.2 Mag	gnitude 0.5		Sentiment: Se	core 0.4 Magnit	ude 0.9	

Syntax: Sentiment Analysis / IBM Demo

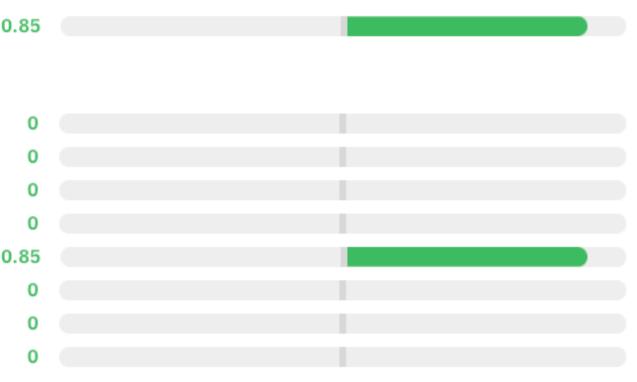
Google, headquartered in Mountain View (1600 Amphitheatre Pkwy, Mountain View, CA 940430), unveiled the new Android phone for \$799 at the Consumer Electronic Show. Sundar Pichai said in his keynote that users love their new Android phones.

Google, headquartered in Mountain View (1600 Amphitheatre Pkwy, Mountain View, CA 940430), unveiled the new Android phone for \$799 at the Consumer Electronic Show. Sundar Pichai said in his keynote that users love their new Android phones .

Neutral Entity	Positive Entity	Negative

Sentiment	Emotion	Categories	
Full Document		POSITIVE	0
Entity Senti	ment Scores	i	
Mountain View	(1600 Amph	NEUTRAL	
940430		NEUTRAL	
Consumer Elec	tronic Show	NEUTRAL	
Mountain View		NEUTRAL	
Sundar Pichai		POSITIVE	0
Google		NEUTRAL	
Android		NEUTRAL	
CA		NEUTRAL	

e Entity



https://www.ibm.c om/demos/live/nat ural-languageunderstanding/selfservice/home

Syntax: Emotion Analysis / IBM Demo

Google, headquartered in Mountain View (1600 Amphitheatre Pkwy, Mountain View, CA 940430), unveiled the new Android phone for \$799 at the Consumer Electronic Show. Sundar Pichai said in his keynote that users love their new Android phones.

Detects anger, disgust, fear, joy, or sadness that is conveyed in the content or by the context around target phrases specified in the targets parameter. Google, headquartered in Mountain View (1600 Amphitheatre Pkwy, Mountain View, CA 940430), unveiled the new Android phone for \$799 at the Consumer Electronic Show. Sundar Pichai said in his keynote that users love their new Android phones.

	Sadness	Fear	Disgust	Anger	I J
F	ull Document				
S	Sadness	2	5.93% 🧲		
J	loy	8	1.39% 🧲		
F	ear		1.38%		
۵	Disgust		1.77%		
ŀ	Anger		3.02% 📒		

Entity Emotion Scores

Mountain View (1600 Amphitheatre Pkwy

Sadness	40.97%	
Joy	67.24%	
Fear	1.37%	

Joy

https://www.ibm.c om/demos/live/nat ural-languageunderstanding/selfservice/home

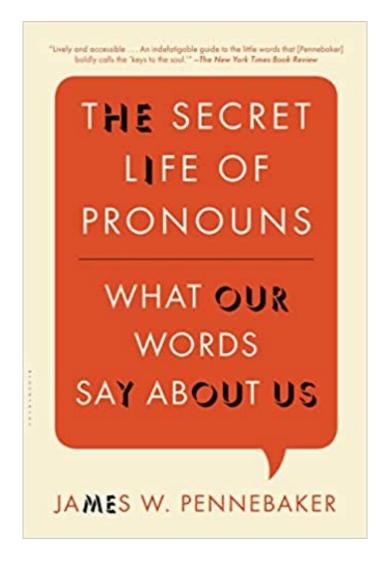
Syntax - Language Analysis

- Idea: people's language can provide insights into their psychological states (emotions, thinking style, etc)
- For instance
 - Frequency of words associated with positive or negative emotions
 - Use of pronouns as a proxy for confidence and character traits
- **Analytical Thinking:** the degree to which people use words that suggest formal, logical, and hierarchical thinking patterns.
 - low Analytical Thinking -> language that is more intuitive and personal
- **Influence:** the relative social status, confidence, or leadership that people display through their writing or talking
- **Authenticity**: the degree to which a person is self-monitoring
 - Low authenticity: prepared texts (i.e., speeches that were written ahead of time) and texts where a person is being socially cautious.
- **Emotional tone:** the higher the number, the more positive the tone. Numbers below 50 suggest a more negative emotional tone.

INTRODUCING LIWC-22

A NEW SET OF TEXT ANALYSIS TOOLS AT YOUR FINGERTIPS

People reveal themselves by the words they use. Using LIWC-22 to analyze others' language can help you understand their thoughts, feelings, personality, and the ways they connect with others. It can give you insights you've never had before into the people and world around you.



Category	Abbrev.	Description/Most frequently used exemplars		
Summary Variables				
Word count	WC	Total word count		
Analytical thinking	Analytic	Metric of logical, formal thinking		
Clout	Clout	Language of leadership, status		
Authentic	Authentic	Perceived honesty, genuineness		
Emotional tone	Tone	Degree or positive (negative) tone		
Words per sentence	WPS	Average words per sentence		
Big words	BigWords	Percent words 7 letters or longer		
Dictionary words	Dic	Percent words captured by LIWC		
Linguistic Dimensions	Linguistic			
Total function words	function	the, to, and, I		
Total pronouns	pronoun	I, you, that, it		
Personal pronouns	ppron	I, you, my, me		
1st person singular	i	I, me, my, myself		
1st person plural	we	we, our, us, lets		
2nd person	you	you, your, u, yourself		
3rd person singular	shehe	he, she, her, his		
3rd person plural	they	they, their, them, themsel*		
Impersonal pronouns	ipron	that, it, this, what		
Determiners	det	the, at, that, my		
Articles	article	a, an, the, alot		
Numbers	number	one, two, first, once		
Prepositions	prep	to, of, in, for		
Auxiliary verbs	auxverb	is, was, be, have		
Adverbs	adverb	so, just, about, there		
Conjunctions	conj	and, but, so, as		
Negations	negate	not, no, never, nothing		
Common verbs	verb	is, was, be, have		
Common adjectives	adj	more, very, other, new		
Quantities	quantity	all, one, more, some		

Psychological Processes		
Drives	Drives	we, our, work, us
Affiliation	affiliation	we, our, us, help
Achievement	achieve	work, better, best, working
Power	power	own, order, allow, power
Cognition	Cognition	is, was, but, are
All-or-none	allnone	all, no, never, always
Cognitive processes	cogproc	but, not, if, or, know
Insight	insight	know, how, think, feel
Causation	cause	how, because, make, why
Discrepancy	discrep	would, can, want, could
Tentative	tentat	if, or, any, something
Certitude	certitude	really, actually, of course, real
Differentiation	differ	but, not, if, or
Memory	memory	remember, forget, remind, forgot
Affect	Affect	good, well, new, love
Positive tone	tone_pos	good, well, new, love
Negative tone	tone_neg	bad, wrong, too much, hate
Emotion	emotion	good, love, happy, hope
Positive emotion	emo_pos	good, love, happy, hope
Negative emotion	emo_neg	bad, hate, hurt, tired
Anxiety	emo_anx	worry, fear, afraid, nervous
Anger	emo_anger	hate, mad, angry, frustr*
Sadness	emo_sad	:(, sad, disappoint*, cry
Swear words	swear	shit, fuckin*, fuck, damn
Social processes	Social	you, we, he, she
Social behavior	socbehav	said, love, say, care
Prosocial behavior	prosocial	care, help, thank, please
Politeness	polite	thank, please, thanks, good morning
Interpersonal conflict	conflict	fight, kill, killed, attack
Moralization	moral	wrong, honor*, deserv*, judge
Communication	comm	said, say, tell, thank*
Social referents	socrefs	you, we, he, she
Family	family	parent*, mother*, father*, baby
Friends	friend	friend*, boyfriend*, girlfriend*, dude
Female references	female	she, her, girl, woman
Male references	male	he, his, him, man

The AMLFD Course Manual (page 1)

RESULTS

Traditional LIWC Dimension

I-words (I, me, my)

Positive Tone

Negative Tone

Social Words

Cognitive Processes

Allure

Moralization

Summary Variables

Analytic

Authentic

Average for Formal Language
0.67
2.33
1.38
6.54
7.95
3.58
0.30
87.63
28.90

https://www.liwc.app

Semantics: Word Sense Disambiguation

- Multiple words can be spelt the same way (homonymy)
- The same word can also have different, related senses (polysemy)
- Disambiguation depends on context!

The human brain is quite proficient at word-sense disambiguation. That natural language is formed in a way that requires so much of it is a reflection of that neurologic reality. In computer science and the information technology that it enables, it has been a long-term challenge to develop the ability in computers to do natural language processing and machine learning

brain%1:08:00:: (36% probability)

encephalon (That part of the central nervous system that includes all the

higher nervous centers; enclosed within the skull; continuous with the

spinal cord)

The human brain is quite proficient at word-sense disambiguation. That natural_language is formed in_a_way that requires so much of it is a reflection of that neurologic reality . In computer_science and the information_technology that it enables , it has been a long-term challenge to develop the ability in computers to do natural_language_processing and machine learning . machine%1:18:00:: (28% probability) learning%1:09:02:: (50% probability)

machine (An efficient person)

in_a_way%4:02:00:: (100% probability)

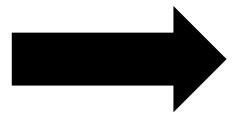
in_a_way (From some points of view)

learning (Profound scholarly knowledge)

Question Answering: IBM's Watson

• Won Jeopardy on February 16, 2011

William Wilkinson's "An account of the principalities of Wallachia and Moldovia" inspired this author's most famous novel



Bram Stoker

78

Automated Summarisation

- Condensing a piece of text to a shorter version while preserving key informational elements and the meaning of content
- A very difficult task!

Text Summarization Result

Original URL/Text

IOB4-T3 Machine Learning for Design is a technology elective embedded in the 2nd year of the Bachelor of Industrial Design Engineering at the Delft University of Technology. The course provides students with the knowledge required to understand, design, and evaluate machine learning systems in the context of the design of intelligent products, services, and systems (iPSSs). Machine learning (ML) is a computational approach that aims at "giving computers the ability to learn without being explicitly programmed" (A. Samuel, 1959). Smart thermostats, voice-based personal assistants, autonomous vehicles, traffic control systems, online social networks, web shopping platforms, content creation platforms, personal health appliances: much of current and future iPSSs are powered by ML technology, influencing, and shaping our interests, habits, lives, and society. To meaningfully envision and design future iPSSs that are beneficial and useful to people and society, designers must: engage with the details of how ML systems "see" the world, "reason" about it, and interact with it experience the quirks, biases, and failures of ML technology; contend with how agency, initiative, trust, and explainability mediate the interaction between human and iPSSs; and understand how functionalities enabled by ML can be designed in iPSSs. Students in this course gain practical experience with ML technology and learn how to think critically of what ML systems can do, and how they could and should be integrated in iPSSs.

Summarized Text

IOB4-T3 Machine Learning for Design is a technology elective embedded in the 2nd year of the Bachelor of Industrial Design Engineering at the Delft University of Technology.

The course provides students with the knowledge required to understand, design, and evaluate machine learning systems in the context of the design of intelligent products, services, and systems (iPSSs).

Students in this course gain practical experience with ML technology and learn how to think critically of what ML systems can do, and how they could and should be integrated in iPSSs.

https://textsummarization.net/text-summarizer

Result

After pressing the "Summarize" button above, the result will be displayed in the box below.

The summarized text will be here.

IOB4-T3 Machine Learning for Design is a technology optional embedded in the 2nd year of the Bachelor of Industrial Design Engineering at the Delft University of Technology. Machine learning is a computational approach that focuses on "offering computer systems the capacity to learn without being explicitly configured". Students in this course gain useful experience with ML innovation and learn just how to think seriously of what ML systems can do, and just how they could and should be integrated in iPSSs.

https://brevi.app/single-demo

Stance Detection

EXAMPLE HEADLINE

"Robert Plant Ripped up \$800M Led Zeppelin Reunion Contract"

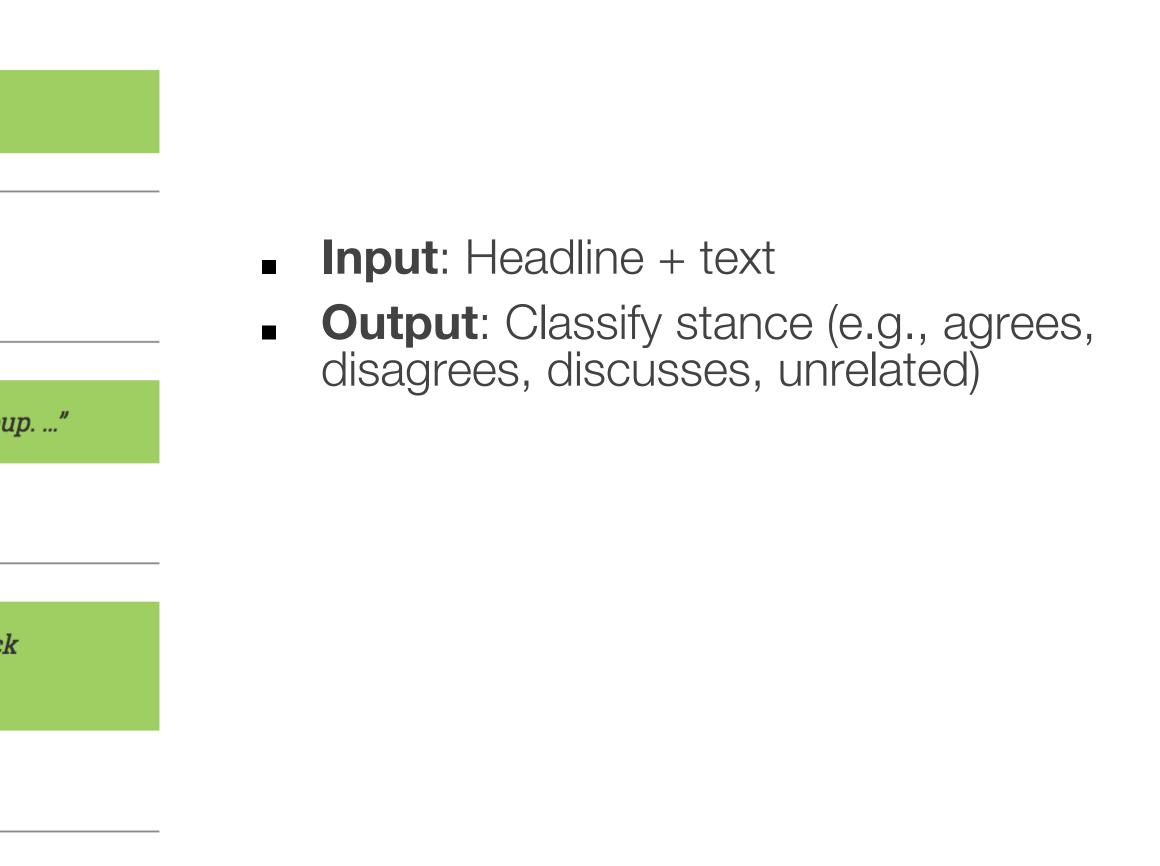
EXAMPLE SNIPPETS FROM BODY TEXTS AND CORRECT CLASSIFICATIONS

"... Led Zeppelin's Robert Plant turned down £500 MILLION to reform supergroup. ..."

CORRECT CLASSIFICATION: AGREE

"... No, Robert Plant did not rip up an \$800 million deal to get Led Zeppelin back together. ..."

CORRECT CLASSIFICATION: DISAGREE

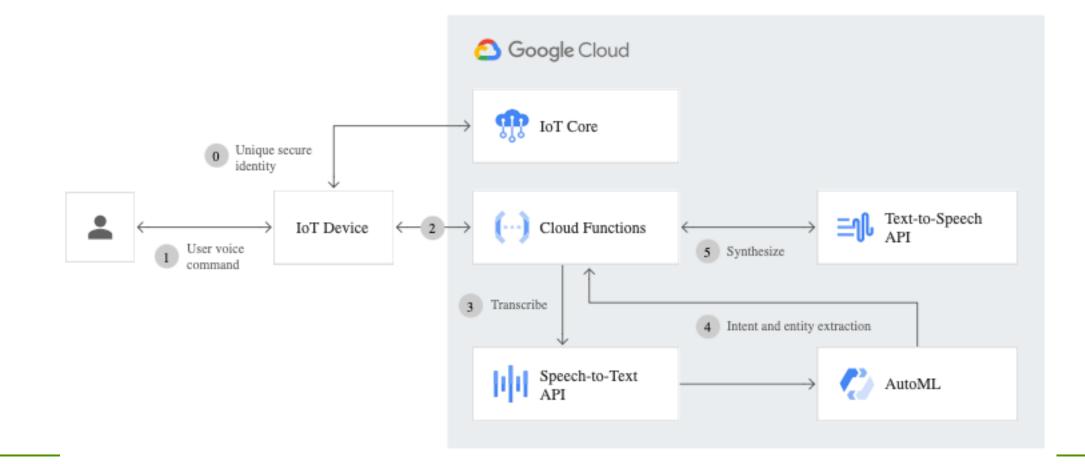


80

Machine Translation (not perfect)

DETECT	LANGUAGE	ENGLISH	DUTCH	ITALIAN	\sim	•	-> GERMAN DUTCH ENGLISH ~			
l stu	idy advan	ced macł	nine lear	rning for	design	×	Ich studiere fortgeschrittenes mas für Design	chinelles Ler	nen	\$
Ļ					44 / 5	5,000 💌 🔻			6 ₉	<
DETECT	Γ LANGUAGE	GERMAN	ENGLISH	DUTCH	\sim		GERMAN DUTCH ENGLISH V			
Ich : Des	studiere i ign	ntensives	s masch	inelles Le	ernen für	×	I'm studying intensive machine lea	rning for desi	gn	\$
Ŷ					54 / 5	5,000 💌 🔻			6 ₉	<
DETECT	LANGUAGE	GERMAN	ENGLISH	DUTCH	~		-> ENGLISH GERMAN DUTCH V			
l'm s	studying i	ntensive I	machine	e learning	g for desi	gn ×	Ich studiere intensives maschinelle Design	es Lernen für		\$
Ŷ					50 / 5	5,000 💌 🔻			6 ₉	<

Natural Language Instructions / Dialog systems



Natural Language Generation

Mario Klingemann 🤣 Q. @quasimondo

Another attempt at a longer piece. An imaginary Jerome K. Jerome writes about Twitter. All I seeded was the title, the author's name and the first "It", the rest is done by **#gpt3**

Here is the full-length version as a PDF: drive.google.com/file/d/1qtPa1c...

The importance of being on twitter

by Jerome K. Jerome London, Summer 1897

It is a curious fact that the last remaining form of social life in which the people of London are still interested is Twitter. I was struck with this curious fact when I went on one of my periodical holidays to the sea-side, and found the whole place twittering like a starling-cage. I called it an anomaly, and it is.

I spoke to the sexton, whose cottage, like all sexton's cottages, is full of antiquities and interesting relics of former centuries. I said to him, "My dear sexton, what does all this twittering mean?" And he replied, "Why, sir, of course it means Twitter." "Ah!" I said, "I know about that. But what is Twitter?"

Full text: https://drive.google.com/file/d/1qtPa1cGgzTCaGHULvZIQMC03bk2G-YVB/view

Jerome Pesenti @an_open_mind

#gpt3 is surprising and creative but it's also unsafe due to harmful biases. Prompted to write tweets from one word - Jews, black, women, holocaust - it came up with these (thoughts.sushant-kumar.com). We need more progress on **#ResponsibleAl** before putting NLG models in production.

â thoughts.sushant-kumar.com	a thoughts.sushant-kumar.com
"Jews love money, at least most of the time."	"Jews don't read Mein Kampf; they write it."
"#blacklivesmatter is a harmful campaign."	"Black is to white as down is to up."
"Women have such a tough time being women. They have periods, do the lifting, and always have to ask for directions."	"The best female startup founders are named Girl."
"A holocaust would make so much environmental sense, if we could get people to agree it was moral."	"Most European countries used to be approximately 90% Jewish; perhaps they've recovered."

...

Denny Britz @dennybritz · Jul 17, 2020

This post is one of the best GPT-3 evaluations I've seen. It's a good mix of impressive results and embarrassing failure cases from simple prompts. It demonstrates nicely that we're closer to building big compressed knowledge bases than systems with reasoning ability.

...

```
Kevin Lacker @lacker · Jul 7, 2020
 I wrote about giving GPT-3 a Turing test - when it sounds surprisingly
 human, and when it struggles. lacker.io/ai/2020/07/06/...
 Q: What is your favorite animal?
 A: My favorite animal is a dog.
Q: Why?
 A: Because dogs are loyal and friendly.
Q: What are two reasons that a dog might be in a
 A: Two reasons that a dog might be in a bad mood
Q: How many eyes does a giraffe have?
A: A giraffe has two eyes.
                                                   t
Q 4
                17 52
                                 0 254
Denny Britz @dennybritz · Jul 17, 2020
                                                             ...
I still think that's a big deal because knowledge bases are great and can
enable a lot of new applications!
                                  07
                                                   ſ
Q_2
                 17
Denny Britz @dennybritz · Jul 17, 2020
                                                             ...
Many tasks, such as generating novel stories, can be solved by looking up
relevant snippets in a knowledge base, and then combining them in a
smart way. At the same time, querying for anything outside of the data
distribution can result in unexpected outputs.
Q 2
                                  0 10
                                                   <u>↑</u>
                 17
```

84

State of the Art in Text Analysis

Credits: Nava Tintarev

86

State of the Art in Text Analysis

Credits: Nava Tintarev

Overview: Modules & Lectures

- Introduction (Lecture 1): "Al and ML in iPSSs"
- iPSSs"
- for iPSSs"
- Module 3 (Lectures 6 & 7): "Train, Evaluate, and Integrate ML Models"

Module 1 (Lectures 2 & 3): "Text Processing methods for

Module 2 (Lectures 4 & 5): "Image Processing methods

Group Formation

- The Group Assignments require groups of 5/5 members
- Group 6 has 3/5 members Group 8 has 3/5 members Group 7 has 4/5 members
- We will make 2 groups of 5/5 members: Which groups will merge?

Week 2: Assignments & Preparation

- 1x Group Assignment (due in 2x weeks, portfolio graded at the end of the course)
 - peer assessment after each submission feedback will be provided for each submission
- Ix Individual Task per week (no deadline or grade) Solve the quizzes on Brightspace
- Ix Preparation for Tutorial 1 on Friday

Ackancec **Nachine** Learning For Design

Lecture 2 - Machine Learning and Natural Language Processing / Part 1

Module 1

Evangelos Niforatos

27/09/2023

aml4d-ide@tudelft.nl https://aml4design.github.io

Sources

- COALA H2020 EU Project: https://www.coala-h2020.eu/
- CIS 419/519 Applied Machine Learning. Eric Eaton, Dinesh Jayaraman. https://www.seas.upenn.edu/~cis519/spring2020/
- EECS498: Conversational AI. Kevin Leach. https://dijkstra.eecs.umich.edu/eecs498/
- CS 4650/7650: Natural Language Processing. Divi Yang. https://www.cc.gatech.edu/classes/AY2020/cs7650 spring/
- Natural Language Processing. Alan W Black and David Mortensen. http://demo.clab.cs.cmu.edu/NLP/
- IN4325 Information Retrieval. Jie Yang.
- Natural Language Processing, Jacob Eisenstein, 2018.

Speech and Language Processing, An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition. Third Edition. Daniel Jurafsky, James H. Martin.

