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Only 26/45 Peer Assessment forms completed for Group Assignment 1!

We will publish Group Assignment feedback and aggregated peer assessment scores by next week.
Preparation about the final exam

» Content: Slides, Sources and Materials on https://aml4design.github.io/

» Quizzes: Complete them at your own time

» Example exam in the last week of the course

Final Exam

» Regqister for the final exam (Nov. 10 at 13:30)!

« Registration for the final exam expires 14 calendar days before the day of the exam.

« [FOr more information, please check this website: https://www.tudelft.nl/en/student/education/courses-
and-examinations/examinations/registration-for-exams



https://www.tudelft.nl/en/student/education/courses-and-examinations/examinations/registration-for-exams
https://www.tudelft.nl/en/student/education/courses-and-examinations/examinations/registration-for-exams

How do
humans see”?




Hubel and Wiesel, 1959

https:// www.youtube.com/watch?v=I0Hayh06LJ4
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FIGURE 4.8 Response of a single cortical cell to bars presented at various orientations.
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https://nba.uth.tmc.edu/neuroscience/m/s2/chapter15.nhtmil



Neural Correlation of Objects & Scene Recognition

Faces > Houses

% signal change

Kanwisher et al. J. Neuro. 1997 Epstein & Kanwisher, Nature, 1998




Why Is
machine
vision hard?




The deformable and truncated cat

Figure 1. The deformable and truncated cat. Cats exhibit (al-
most) unconstrained variations 1n shape and layout.

Parkhi et al. The truth about cats and dogs. 2011
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— forward pass

background & light source
' - -« target network

__, objects (shapes, textures) B backward pass

4._( A | S - == €rror vs. desired output
1 )—P T “school bus”
4 3D s image
@ renderer (b) 2D image classifier

(a) 3D scene camera

Strike (with) a Pose: Neural Networks Are Easily Fooled by Strange Poses of Familiar Objects. Alcorn et al. 2019
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https://arxiv.org/pdf/1811.11553.pdf



https://arxiv.org/pdf/1811.11553.pdf

Computer Vision Challenges

Viewpoint Variation

= A single instance of an object can be oriented in many ways with respect to the
camera

Scale variation
» Visual classes often exhibit variation in their size (size in the real world, not only in

Scale variation Deformation Occlusion

Background clutter Intra-class variation

terms of their extent in the image) y w,%x, T2
Deformation » S
= Many objects of interest are not rigid bodies and can be deformed Iin extreme ways
Occlusion =B - EEE
= The objects of interest can be occluded. Sometimes only a small portion of an object R AT e e Bl = S

(as little as few pixels) could be visible -+ r—
lllumination Condition f-%%ié:
= [he effects of illumination are drastic on the pixel level g\t .&Eﬁﬂj
Background clutter Q{] nn“ ‘{1‘

= [he objects of interest may blend into their environment, making them hard to identify CEESEDS QS E

Intra-class variation H.ﬁﬂﬂﬂﬂm

» [ he classes of interest can often be relatively broad, such as chair. There are many Eagﬂﬁgﬂ -

different types of these objects, each with their own appearance | - 1—
%A S = S S
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Let’s see this Iin practice:
Real-time Object Detection
Demo

Model: YOLOVS in PyTorch when / where does the model fail”?
Find code on: https://aml4design.github.io/code/



https://github.com/ultralytics/yolov5
https://aml4design.github.io/code/

How CV models
work?




Flattening

>

d = width x height

>

Input layer size = d

>, \ /
KOS
2 288 2,
/ 7/ N\ \X 7/
NN




Curse of dimensionality

« High dimensionality
» A1024x768 Image has d = 786432! N p—
s Aliny 32x32 image has d = 1024 (~ 108 dimensions)

« Decision boundaries In pixel space
are extremely complex

« We will need “big” ML models with B
lots of parameters Bl running

» FOr example, linear regressors need
d parameters
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Downsampling

1024




What about generalisation?




The “old days:” Feature Extraction

=« Feature

» A relevant piece of information about the content of an

image

» A good feature:

IS repeatable
identifiable
can be easily tracked and compared

IS consistent across different scales, lighting conditions,

e.g., edges, corners, blobs (regions), ridges

and viewing angles

s still visible In noisy images or when only part of an

objec

IS VIS

can d

istingu

nle

ISh objects from one another

& ® ®
Feature after looking Feature after looking
at one image at thousands of images
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Feature Extraction Techniques

https://www.vlfeat.org

Scale-Invariant Feature Transform (SIFT)

Find “interest points”™ Compute

INn the scene Interes
o | AR A &l

.....

......

REIFSEN

features at Convert to fixed-dimensional
t |ooint§~ feature vector

Histogram
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The “old days:” Feature Engineering

» Machine learning models are only as good as the features you provide them with

» 10 figure out which features you should use for a specific problem
« rely on domain knowledge (or partner with domain experts)

» experiment to create features that make machine

INput Handcrafted Feature
Extraction

h l
A
'd N
=
1] 64 128 255
84 | 128 | 255 .
128 255
0 255
\\ <
B White pixel

28 265

64

earning algorithms work better

Classification Module OQutput

100%

0% I

SVM

Neural Network

Dog Cat
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Performance

Object Detection (~2007) Face Detection (~2013)

Felzenszwalb, Ramanan, McAllester. A Discriminatively Trained, Multiscale,

Deformable Part Model. CVPR 2008 (DPM v1
( ) https://github.com/alexdemartos/ViolaAndJones

Credits: Ross Girshick (Facebook Al Research)
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Convolutional Neural Networks

» CNNs exploit image properties to
drastically reduce the number of
model parameters

Feature extraction Classification Prediction
| | | | |
» Feature maps
Feat Feat - - -
Input layer S i o » Automatically extracted hierarchical
W/ e 3 » Retain spatial association between
W maps >. pIX6|S
W Flattened /r
« Translation invariance
= = 2 N\’ | T
WL M = adogisadog even if its image is
/ \V/O shifted by a few pixels
A///A/A/// ] | |
‘\ = Local interactions
Convolutional layers Fully connected layers Output layer » all processing happens within very

small image windows

« Within each layer, far-away pixels
cannot influence nearby pixels

Deep Learning for Vision Systems. Mohamed Elgendy. Manning, 2020 24



Convolution & Feature Maps

/
=1 3 -
Receptive T3] Convolved image
field B/{ 5 }{ | == (—1x3)+(0x0)+(1x1)+ Input image (feature map)
L iR veE (2% 2)+(0x6)+(2%2)+
T [T (1%2)+(0x4)+(1x1)=-3 -
2 P 0 — }{ Convolution kernel
}/7 }{ 2 }{ 7] T with optimized weights
3 }/ 4 // NN e // o=
—1 6 g 6 }/ 6 T 2 s //
Py 2 | 6 L = T oo L2 —
6 | — 0 = = ﬁ/ =al | 1 * —1 4 -1 —
L S T
}/ Convolution 7 ////// O |10
filter (3 X 3) / ] == L=
Destination ////////
Values are weights that P> T P =
= mgm P | —
are initially set at Convolved—— | _L—
image L
random and then
learned « |1y this

https://cs.stanford.edu/people/karpathy
/convnetjs/demo/mnist.html

Deep Learning for Vision Systems. Mohamed Elgendy. Manning, 2020 25


https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html
https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html

What do CNN learn?

, conv3 conv4 eonvd pS fcB fe7 feB
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HM
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jack: deconv (from convo__ 151, disp raw) | Boost: 0/]

https://youtu.be/AgkflQ41GaM https://yosinski.com/deepvis



Feature Visualisation

Low-Level| |Mid-Level| |[High-Level Trainable
Feature Feature Feature Classifier

A

o
U \..{’

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]
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Visualizing and Understanding Convolutional
Network. Zeiler and Fergus, ECCV 2014
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Visualizing and Understanding
Convolutional Network.

Zeiler and Fergus, ECCV 2014
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Visualizing and Understanding
Convolutional Network.

Zeiler and Fergus, ECCV 2014



Network dissection

House Dog
resSc unit 1410 IoU=0.142 res5c unit 1573

R | 'ﬁ"

ResNet-152

GooglLeNet

VGG-16

loU=0.216

Train
resSc unit 924

convs 3 unit 402

loU=0.293

Plant Airplane
resSc unit 264 loU=0.126 res5c unit 1243

ressSc unit 766

inception_4e unit 56 loU=0.139

inception_4e unit 714 loU=0.105

loU=0.172

loU=0.156

loU=0.164

http://netdissect.csail.mit.edu
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http://netdissect.csail.mit.edu/

Translation Invariance

A
A

= But Not rotation and scaling invariance!




Data Augmentation

Generate variations of the input data, to improve generalisability (out of distribution inputs)

Improve invariance (rotation, scaling, distortion)

(Geometric

Flipping

Color space
Cropping
Rotation
Translation
Noise Injection

Color space transformation
Mixing Images

Random erasing

Adversarial training
GAN-based image generation

A survey on Image Data Augmentation for

image classification

person re-1D

Deep Learning. Shorten, Journal of Big
Data, 2019
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Robustness to input variation
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Strike (with) a Pose: Neural Networks Are Easily
Fooled by Strange Poses of Familiar Objects.
Alcorn et al. 2019

https://arxiv.org/pdf/1811.11553.pdf

34


https://arxiv.org/pdf/1811.11553.pdf

Transfer Learning ranster Loaming

Reuse a model trained for one task is re-purposed
(tuned) on a different but related task

Model trained on large dataset Useful in tasks laking abundant data

S '™ T E W I N S S B S BN BN BN BN B BN BN BN BN BN BN B BN BN B BN B W B W
1 Input layer Bottleneck layer Input Data
E‘ w Cat Classifier Dog Classifier ’@_ Vi‘

|
|—>

Dog Dog Not Do
Labelled Data ML Algorithm ML Model II» ML Model «H ML Algorithm Labelled Data

Prediction ﬂ Dog

q- — — — = = = = -

Output layer

! « Problem: training custom ML models requires
extremely large datasets

.

AN -2
CRISASH
IR RHKK XX =D
AKX L HKIEAR
05 S AN . .
A ‘\'/ ‘\v,'. = Transfer learning: take a model that has been trained
‘/ ' e / on the same type of data for a similar task and
‘ apply 1t to a specialised task using our own custom

e
NS
\!"\‘f»:f

data.
« Same data: same data modality. same types of images
................................. (e.g. professional pictures vs. Social media pictures)
s " /\/V\J « Similar tasks: if you need a new object classification
Frozen layers Top model, use a model pre-trained for object classification
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Advanced
Computer Vision
Techniques




Generative Adversarial Networks

» Learn patterns from the training dataset and create new images that have a similar distribution of the training
set

» WO deep neural networks that compete with each other

. ghe generator tries to convert random noise into observations that look as if they have been sampled from the original
ataset

» [he discriminator tries to predict whether an olbservation comes from the original dataset or is one of the generator’s
forgeries

Training set
// — Real

Random noise _ Fake

'j ﬂ o Discriminator

Fake image

Generator

Deep Learning for Vision Systems. Mohamed Elgendy. Manning, 2020 3



Generative Adversarial Networks

» [ he generator’s architecture looks like an = [he discriminator’'s model is a typical
inverted CNN that starts with a narrow input classification neural network that aims to
and is upsampled a few times until it reaches classify images generated by the generator
the desired size as real or fake

Training dataset Discriminator network

Convolutional
layers
. _ N . Sigmoid
Real images —
Upsampllng 'mag function
Random noise s q | 5
input vector S
F\‘\ L)

'.“&,\'L‘ h Reshaping O )"
el d 'J - ¢
g A Fake images —
Tx7x128 44 %14 x128
28 x 28 x 64 - ’

28 x 28 x 1

realness
probability output

Feedback through backpropagation

Random noise

Output

Discriminator — (e.g. 0.3)

N R N0
I e S U . L .

Fake image

Deep Learning for Vision Systems. Mohamed Elgendy. Manning, 2020 Generator 38



Which face is real? - https://www.whichfaceisreal.com/

ABOUT METHODS LEARN PRESS CONTACT BOOK CALLING BS

Click on the person who is real.

» [y this
https:7/thispersondoesnotexist.com/ 5,




Image super-resolution GAN

» A good technical
summary

https://blog.paperspace.com/im
age-super-resolution/

https://newatlas.com/super-resolution-weizmann-institute/23486/
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Synthetic Video Generation

Q synthesia

Say goodbye to cameras,
microphones and actors!

Create professional Al videos from text in 60+ languages.

4) Unmute video




Text-to-image Generation

TEXT PROMPT

AI-GENERATED
IMAGES

TEXT PROMPT

AI-GENERATED
IMAGES

« Nttps://openai.com/blog/dall-e/

an illustration of a baby daikon radish in a tutu walking a dog

Edit prompt or view more images+v

an armchair in the shape of an avocado. ...

SW_ A

Edit prompt or view more imagesv

4

Ao

4
<

.y

L
. -

=75

W
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= ML-generated painting sold for $432,500

« | Ne network trained on a dataset of
15,000 portraits painted between the
fourteenth and twentieth centuries

» Network “learned” the style, and
generated a new painting

8 ol o -
- i

43
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Neural Style Transfer

Content Image

https://fluxml.ai/experiments/style Transfer/

Style Image

Stylized Result
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te.com/rinongal/stylegan-nada

ICa

//repl

https
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Deepfakes
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Advanced:
Backpropagation
in DNNs




From a Neuron to a Deep Neural Network (DNN)
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How exactly does a Neuron in a DNN work?

Source: “What is backpropagation really doing?” —YouTube walk-through (see last slide)



Activation

Functions for Forward Propagation

10

Leaky ReLU
max(0.1z, x)

-1 10

Maxout
max(wi x + by, wa = + b)

104

ELU

T x>0

Oz(ex — 1) €Tr < 0 - 10

50



But how does a DNN learn?

Minimize Error

‘O oS
\\ ' ' O 0 (02-.07 ™\
.‘\‘97&\\0//"\\9// - :
SOOI ™ e
2 ;"\§.6;‘:’\ .6'".\@] 2 (7-0F p- Cost 0
"0‘\ /‘N /“\ — S
. /\. . t 9 t(.11-1)2 )

We want to minimize C(W, B, S, E)



Stochastic Gradient Descent

« 1. Compute VC (gradient direction of cost
function)

» 2. Small step towards the -V C direction

=
= 3. Repeat T
SRR 2B
3.8 2
W 2.2 - —> -3
= | vewW) =|
1.4 W 1.4
2.12 -.05
_1-4 / K -2 /




Backpropagation for computing Stochastic Gradient

Descent

» INncrease bias (b) and weights (w;) Iin
proportion to previous layer activations (a;)

» Change activations from the previous layer
(a;) In proportion to weights (w;)

« Repeat over the entire training dataset
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1. Increase bias (b) and weights (w) in proportion to previous layer
activations (a)

O\\\

@ o
7~ R
'0@%‘:",9 |

X'\ 2 \‘Q’ (
','«‘x‘k CRED

O

I

»

> TR S
4}3‘\'."“’ @?:‘Q 2
/\\./W\\ @ Bexx9

Focus on the activation of the neuron we want to Increase:

11 = o(wpayg + wiaq + -+ w,_1a,,_1 + b)



2. Change the activations from the previous layer (a) in proportion

to weights (w)
Je

; a;

. \(gVen SSPO’L Sireotly alter the activations \\\ ' _ Wi 0
e O IR SN

» We seek to maximize magnitude ‘\\' Z’A . "y . ®’ % | e 1

. A WV, ‘ v ‘

. V\ée gradutally IOrloc uceI a list of %&é( \"'?"’( /"?"‘(

» We rjct,ursivelloloay | th;/ same . ﬂé“‘\é .""{* @"“’ :
process backi//va?cgl)sy : "“\\ / x /‘\ :

/) (¥ (qlY @ 9

“When 2 connected cell neurons fire simultaneously, the connection between
them strengthens” — Donald Hebb (1949)




3. Repeat for the entire Training Dataset

! 1 G 1 q ** Average over all
training dataset
w,  -.02 5 21 -1 +.4 +.01
W, +.3 .31 -.07 +.2 -.12 + 09
=-VC(w,, Wy,...W,,
W, +1  +03 -09 +1  +.02 .03 Wi W Wn-t)
Wh-1 1 +.05 -.01 +.04 @ -.03 - 17 -.19
\- J




Backpropagation with Batching

« Computationally expensive process if done case

by case, instead:
«  Shuffle dataset
« Divide In batches

« Compute a gradient descent “step” per
patch

Compute step
with backprop

for batch #1

Compute step
with backprop
for batch #2

Compute step
with backprop
for batch #3

Compute step
with backprop
for batch #4
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Recap

Back propagation is the algorithm that
determines how a single training
example (case) would alter neurons’
weights and biases for achieving the
most rapid decrease to the cost.

By dividing our training dataset in
batches, the network will converge to a
local minimum of the cost function (C)
by making gradual adjustments.

NOTE #1: The training dataset should
oe sufficiently large for
packpropagation to work.

NOTE #2: Ineffective with “noisy”
training data

Error







Credits

« CMU Computer Vision course - Matthew O’Toole. http://16385.courses.cs.cmu.edu/spring2022/

« CIS 419/519 App
nttps://www.seas.upenn.edu/~cis519/spring2020/

» Deep Learning

ied Machine Learning. Eric Eaton, Dinesh Jayaraman.

Patterns and Practices - Andrew Ferlitsch, Maanning, 2021

« Machine Learning Design Patterns - Lakshmanan, Robinson, Munn, 2020

« Grokking Machi

ne Learning. Luis G. Serrano. Manning, 2021

« Deep Learning-

or Vision Systems. Mohamed Elgendy. Manning, 2020
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