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Only 26/45 Peer Assessment forms completed for Group Assignment 1!
We will publish Group Assignment feedback and aggregated peer assessment scores by next week.
Preparation about the final exam

Content: Slides, Sources and Materials on https://aml4design.github.io/
Quizzes: Complete them at your own time
Example exam in the last week of the course

Final Exam

Register for the final exam (Nov. 10 at 13:30)!

Registration for the final exam expires 14 calendar days before the day of the exam. 

For more information, please check this website: https://www.tudelft.nl/en/student/education/courses-
and-examinations/examinations/registration-for-exams 

https://www.tudelft.nl/en/student/education/courses-and-examinations/examinations/registration-for-exams
https://www.tudelft.nl/en/student/education/courses-and-examinations/examinations/registration-for-exams


How do 
humans see?
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Hubel and Wiesel, 1959

https://www.youtube.com/watch?v=IOHayh06LJ4
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Neural Pathways

https://nba.uth.tmc.edu/neuroscience/m/s2/chapter15.html

Edges Simple 
Shapes

Complex 
Shapes

Faces and 
Objects

Lower layers Upper layers
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Neural Correlation of Objects & Scene Recognition



Why is 
machine 
vision hard?
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The deformable and truncated cat

Parkhi et al. The truth about cats and dogs. 2011



11



12

Strike (with) a Pose: Neural Networks Are Easily Fooled by Strange Poses of Familiar Objects. Alcorn et al. 2019

https://arxiv.org/pdf/1811.11553.pdf

https://arxiv.org/pdf/1811.11553.pdf
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Computer Vision Challenges
Viewpoint Variation

A single instance of an object can be oriented in many ways with respect to the 
camera

Scale variation
Visual classes often exhibit variation in their size (size in the real world, not only in 
terms of their extent in the image)

Deformation
Many objects of interest are not rigid bodies and can be deformed in extreme ways

Occlusion
The objects of interest can be occluded. Sometimes only a small portion of an object 
(as little as few pixels) could be visible

Illumination Condition
The effects of illumination are drastic on the pixel level

Background clutter
The objects of interest may blend into their environment, making them hard to identify

Intra-class variation
The classes of interest can often be relatively broad, such as chair. There are many 
different types of these objects, each with their own appearance



Let’s see this in practice: 
Real-time Object Detection 
Demo

Model: YOLOv5 in PyTorch when / where does the model fail?
Find code on: https://aml4design.github.io/code/

https://github.com/ultralytics/yolov5
https://aml4design.github.io/code/


How CV models 
work?
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Flattening
d = width x height Input layer size = d
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Curse of dimensionality
High dimensionality

A 1024×768 image has d = 786432! 
A tiny 32×32 image has d = 1024

Decision boundaries in pixel space 
are extremely complex

We will need “big” ML models with 
lots of parameters 

For example, linear regressors need   
d parameters
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Downsampling

1024

1024

224

224
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What about generalisation?
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The “old days:” Feature Extraction
Feature

A relevant piece of information about the content of an 
image

e.g., edges, corners, blobs (regions), ridges

A good feature: 
is repeatable
identifiable
can be easily tracked and compared
is consistent across different scales, lighting conditions, 
and viewing angles
is still visible in noisy images or when only part of an 
object is visible
can distinguish objects from one another
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Feature Extraction Techniques https://www.vlfeat.org

Co-variant feature detector Histogram and oriented gradients

Scale-Invariant Feature Transform (SIFT) 

Find “interest points” 
in the scene

Compute features at 
interest points

Convert to fixed-dimensional 
feature vector
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The “old days:” Feature Engineering
Machine learning models are only as good as the features you provide them with
To figure out which features you should use for a specific problem

rely on domain knowledge (or partner with domain experts) 
experiment to create features that make machine learning algorithms work better

Input

SVM
Neural Network
…

Classification ModuleHandcrafted Feature 
Extraction Output

Dog Cat

100%

0%



23

Performance

Felzenszwalb, Ramanan, McAllester. A Discriminatively Trained, Multiscale, 
Deformable Part Model. CVPR 2008 (DPM v1)

Credits: Ross Girshick (Facebook AI Research)

Object Detection (~2007) Face Detection (~2013)

https://github.com/alexdemartos/ViolaAndJones
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Convolutional Neural Networks
CNNs exploit image properties to 
drastically reduce the number of 
model parameters

Feature maps
Automatically extracted hierarchical 
Retain spatial association between 
pixels

Translation invariance
a dog is a dog even if its image is 
shifted by a few pixels

Local interactions
all processing happens within very 
small image windows
within each layer, far-away pixels 
cannot influence nearby pixels

Deep Learning for Vision Systems. Mohamed Elgendy. Manning, 2020
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Convolution & Feature Maps

Values are weights that 
are initially set at 
random and then 
learned

Deep Learning for Vision Systems. Mohamed Elgendy. Manning, 2020

Try this
https://cs.stanford.edu/people/karpathy
/convnetjs/demo/mnist.html

https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html
https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html
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What do CNN learn?

https://youtu.be/AgkfIQ4IGaM https://yosinski.com/deepvis
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Feature Visualisation
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Visualizing and Understanding Convolutional 
Network. Zeiler and Fergus, ECCV 2014
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Visualizing and Understanding 
Convolutional Network.
Zeiler and Fergus, ECCV 2014
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Visualizing and Understanding 
Convolutional Network.
Zeiler and Fergus, ECCV 2014
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Network dissection

http://netdissect.csail.mit.edu

http://netdissect.csail.mit.edu/
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Translation Invariance

But not rotation and scaling invariance!
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Data Augmentation
Generate variations of the input data, to improve generalisability (out of distribution inputs)

Improve invariance (rotation, scaling, distortion)

Geometric
Flipping
Color space
Cropping
Rotation
Translation
Noise Injection

Color space transformation
Mixing Images
Random erasing
Adversarial training
GAN-based image generation

A survey on Image Data Augmentation for 
Deep Learning. Shorten, Journal of Big 
Data, 2019
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Robustness to input variation

Strike (with) a Pose: Neural Networks Are Easily 
Fooled by Strange Poses of Familiar Objects. 
Alcorn et al. 2019

https://arxiv.org/pdf/1811.11553.pdf

https://arxiv.org/pdf/1811.11553.pdf
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Transfer Learning

Problem: training custom ML models requires 
extremely large datasets

Transfer learning: take a model that has been trained 
on the same type of data for a similar task and 
apply it to a specialised task using our own custom 
data. 

Same data: same data modality. same types of images 
(e.g. professional pictures vs. Social media pictures)
Similar tasks: if you need a new object classification 
model, use a model pre-trained for object classification



Advanced 
Computer Vision 
Techniques
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Generative Adversarial Networks
Learn patterns from the training dataset and create new images that have a similar distribution of the training 
set
Two deep neural networks that compete with each other

The generator tries to convert random noise into observations that look as if they have been sampled from the original 
dataset
The discriminator tries to predict whether an observation comes from the original dataset or is one of the generator’s 
forgeries

Deep Learning for Vision Systems. Mohamed Elgendy. Manning, 2020
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Generative Adversarial Networks
The discriminator’s model is a typical 
classification neural network that aims to 
classify images generated by the generator 
as real or fake

The generator’s architecture looks like an 
inverted CNN that starts with a narrow input 
and is upsampled a few times until it reaches 
the desired size

Deep Learning for Vision Systems. Mohamed Elgendy. Manning, 2020
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Which face is real? - https://www.whichfaceisreal.com/

Try this
https://thispersondoesnotexist.com/
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Image super-resolution GAN

https://newatlas.com/super-resolution-weizmann-institute/23486/

A good technical 
summary

https://blog.paperspace.com/im
age-super-resolution/
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Synthetic Video Generation
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Text-to-image Generation

https://openai.com/blog/dall-e/



43https://en.wikipedia.org/wiki/Edmond_de_Belamy

ML-generated painting sold for $432,500

The network trained on a dataset of 
15,000 portraits painted between the 
fourteenth and twentieth centuries

Network “learned” the style, and 
generated a new painting
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Neural Style Transfer

https://fluxml.ai/experiments/styleTransfer/
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https://replicate.com/rinongal/stylegan-nada



46

Deepfakes



Advanced: 
Backpropagation 
in DNNs



From a Neuron to a Deep Neural Network (DNN)

Input
Layer

Hidden Layer #1 Hidden Layer #2 Hidden Layer #3 Hidden Layer #4 Output Layer
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How exactly does a Neuron in a DNN work?

49
Source: “What is backpropagation really doing?”—YouTube walk-through (see last slide)



Activation Functions for Forward Propagation
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. . . 

But how does a DNN learn?

784

0

1

2

9

.7

.11

.3

.02

Output

28x28

Minimize Error

0

1

2

9
Target

. . . +

(.02-.0)2
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(.11-1)2

+

+
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Cost (C)

We want to minimize C(W, B, Sr, Er)
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1. Compute ▽C (gradient direction of cost 
function)

2. Small step towards the -▽C direction

3. Repeat

Stochastic Gradient Descent

1.1
3.8
-2.2

1.4
2.12
-1.4

.1

.2
-.3

1.4
-.05
.2

W = -▽C(W) = → →. . .

. . .
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Backpropagation for computing Stochastic Gradient 
Descent

Increase bias (b) and weights (𝑤!) in 
proportion to previous layer activations (𝑎!)

Change activations from the previous layer 
(𝑎!) in proportion to weights (𝑤!)

Repeat over the entire training dataset
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1. Increase bias (b) and weights (wi) in proportion to previous layer 
activations (αi)

0

1

2

9

.7

.11

.3

.02

.11 = 𝜎(𝑤!𝑎! +𝑤"𝑎" +⋯+	𝑤#$"𝑎#$" + 𝑏)

𝑤!
𝑎!

***
Focus on the activation of the neuron we want to increase:

.6

.9

.03

.4
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2. Change the activations from the previous layer (αi) in proportion 
to weights (wi)

We can’t directly alter the activations 
of neurons

We seek to maximize magnitude 

We gradually produce a list of 
changes to apply per layer

We recursively apply the same 
process backwards

55

𝑤!
𝑎!

.6

.9

.03

.4 0

1
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.11

.3

.02.71

“When 2 connected cell neurons fire simultaneously, the connection between 
them strengthens” – Donald Hebb (1949)



3. Repeat for the entire Training Dataset

w0

w1

w2
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= -▽C(w1, w2,…wn-1)

Average over all 
training dataset
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Backpropagation with Batching
Computationally expensive process if done case 
by case, instead:

Shuffle dataset

Divide in batches

Compute a gradient descent “step” per 
batch

Compute step 
with backprop 
for batch #1

Compute step 
with backprop 
for batch #2

Compute step 
with backprop 
for batch #3

Compute step 
with backprop 
for batch #4
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Recap

Back propagation is the algorithm that 
determines how a single training 
example (case) would alter neurons’ 
weights and biases for achieving the 
most rapid decrease to the cost.

By dividing our training dataset in 
batches, the network will converge to a 
local minimum of the cost function (C) 
by making gradual adjustments.

NOTE #1: The training dataset should 
be sufficiently large for 
backpropagation to work.

NOTE #2: Ineffective with “noisy” 
training data

Trial Lecture | FAU | May 4, 2020 | Trondheim, 
Norway
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Credits
CMU Computer Vision course - Matthew O’Toole. http://16385.courses.cs.cmu.edu/spring2022/
CIS 419/519 Applied Machine Learning. Eric Eaton, Dinesh Jayaraman. 
https://www.seas.upenn.edu/~cis519/spring2020/
Deep Learning Patterns and Practices - Andrew Ferlitsch, Maanning, 2021
Machine Learning Design Patterns - Lakshmanan, Robinson, Munn, 2020
Grokking Machine Learning. Luis G. Serrano. Manning, 2021
Deep Learning for Vision Systems. Mohamed Elgendy. Manning, 2020

http://16385.courses.cs.cmu.edu/spring2022/
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