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Few remarks
Module #1 Group Assignment has been graded

Average Peer Assessment #1 scores have been computed

Module #2 Group Assignment: Deadline extended: Oct. 25, 23:59

Complete Peer Assessment #2 by Friday, Oct. 27, 2022, 23:59

Prepare for Tutorial #3 on “Training, Evaluating and Integrating Machine Learning 
Models”

Tutorial #3 is scheduled for Friday, Oct 27

This tutorial is more advanced than the previous ones

More preparation is required



How to fill in a peer assessment form



Let’s go to 
Pittsburgh, PA, USA 
Tutorial 3 scheduled on Friday 27, 2023
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According to the American Lung Association, Pittsburgh is one of the ten most polluted cities (measured by 
particulate matter) in the United States. Local residents have been fighting against air pollution for decades.

Link to the American Lung Association — https://www.lung.org/research/sota/key-findings/year-round-particle-pollution

https://www.lung.org/research/sota/key-findings/year-round-particle-pollution


7Link to the Pittsburgh pollution map — https://breatheproject.org/pollution-map/

Local people have identified smell as an indicator of air pollution. But, how can we effectively collect the 
smell experiences on a city-wide scale with more than 300,000 residents over many years?

https://breatheproject.org/pollution-map/


8Link to the Smell Pittsburgh application — https://smellpgh.org

Smell Pittsburgh is a mobile application that enables local communities to contribute odor reports in real-
time (with accurate time and location information) and visualize air pollution collaboratively.

https://smellpgh.org
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Smell Pittsburgh predicts upcoming smell events (based on the existing data at a certain time point) and 
sends push notifications to inform users while encouraging engagement in submitting odor data.



11Number of smell reports aggregated by zip codes in the dataset.

A geographic region in Pittsburgh is manually selected when predicting the smell events. The black dot in 
the figure represents the location of Carnegie Mellon University.
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To predict the presence of bad odor within the next few hours, we need to estimate a function that can map 
sensor measurements to smell events as accurately as possible.
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One can technically use if-else rules to predict smell events. But such an approach can be laborious. Can 
we do better than manually specifying these if-else rules while minimizing human efforts?
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It turns out that we can use the Smell Pittsburgh dataset to estimate a function (i.e., train a machine learning 
model) that can predict smell events from sensor measurements.



15Link to the Smell Pittsburgh data — https://github.com/CMU-CREATE-Lab/smell-pittsburgh-prediction

Researchers collected the Smell Pittsburgh dataset, including all the smell reports and sensor measurements (from air 
quality and weather monitoring stations) from October 31, 2016 to September 30, 2018.

EpochTime feelings_symptoms smell_description smell_value zipcode
… … … … …

1478353854 Headache, sinus, seeping into house even though it is as shut and sealed 
as possible. Air purifiers are unable to handle it thoroughly. Industrial, acrid, strong 4 15206

1478354971 Industrial 4 15218
… … … … …

Samples of Citizen-Contributed Smell Reports

EpochTime 3.feed_28.H2S_PPM 3.feed_28.SO2_PPM 3.feed_28.SIGTHETA_DEG 3.feed_28.SONICWD_DEG 3.feed_28.SONICWS_MPH
… … … … … …

1478046600 0,019 0,020 14,0 215,0 3,2
1478050200 0,130 0,033 13,4 199,0 3,4

… … … … … …

Samples of Air Quality Sensor Measurements

https://github.com/CMU-CREATE-Lab/smell-pittsburgh-prediction
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We need to quantitatively define a smell event (i.e., the presence of bad odor): whether the sum of smell 
values within a specific time range is larger than a particular threshold.

EpochTime smell_value zipcode
… … …

1478353854 4 15206
1478354971 4 15218
1478359473 4 15218
1478371179 3 15207
1478393585 3 15217
1478399011 4 15217
1478432399 4 15218
1478432502 2 15206
1478434105 4 15217
1478435133 4 15206
1478435313 4 15206
1478435748 3 15206
1478435801 5 15218

… … …

Samples of Citizen-Contributed Smell Reports

if the sum of smell values 
within H hours > V
(need to define H and V)

else no event 
then there is a smell event
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We need to treat missing data. The sensor measurements can be missing during some time periods since 
some air quality or weather monitoring stations may be down for maintenance.
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The dataset contains time-series data, which means each data point has a timestamp, and we can only use 
data in the past (i.e., data that exists for a specific time point) to train the model to predict the future.

October 25, 2023, 14:30

data in the future
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How do we know which variables from which monitoring stations are effective in predicting the presence of 
bad odor? We can explore the data to get insights or rely on local knowledge of pollution sources.

Extracting unigrams & bigrams from self-reports on odour
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We also need to extract and decide on the features that we want to use when training the machine learning 
model. Such features can help us identify air pollution patterns in the Pittsburgh region.



Data 
Preparation
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Cross-Industry Standard Process for Data Mining (CRISP-DM) Methodology 

https://www.the-modeling-agency.com/crisp-dm.pdf
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Types of Feature / Label Values

Categorical Numerical
Named data
Can take numerical values, but no 
mathematical meaning

Measurements
Take numerical values

Discrete or continous

Nominal Interval

RatioOrdinal

No order
No direction

Order
Direction

Difference between measurements
No true zero or fixed beginning

Difference between measurements
True zero exists

Temperature (K)
Age
Height 
Weight

Temperature (C or F)
IQ
Time, Dates

Marital status
Gender
Ethnicity

Letter grades (A, B, C, D)
Socio-economic status (poor, rich)
Ratings (dislike, neutral, like)
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Ideal Data

https://archive.ics.uci.edu/ml/datasets/iris

sepal_lenght sepal_width petal_lenght petal_width Class

5.0 3.3 1.4 0.2 Iris-setosa

7.0 3.2 4.7 1.4 Iris-versicolor

5.7 2.8 4.1 1.3 Iris-versicolor

6.3 3.3 6.0 2.5 Iris-virginica

Label
Numerical
Feature

Da
ta

se
t S

ize

Dataset Dimensionality

Record / Sample / Data Item

Feature Value

Label Value

Numerical
Feature

Numerical
Feature

Numerical
Feature
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Mixed Feature Types
Data is rarely “clean”

Approximately 50-80 % of the time is spent on data wrangling - could be an under-estimate 
Having good data with the correct features is critical
3 issues to deal with:

(1) Encoding features as numerical values 
(2) Transforming features to make ML algorithms work better
(3) Dealing with missing feature values

Data excerpt from houses
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Easy case: features are already numerical (or Boolean)
Each feature is assigned its own value in the feature space

IsAdult Age

FALSE 17

TRUE 21

TRUE 34

FALSE 9

IsAdult Age

0 17

1 21

1 34

0 9
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One-hot encoding of categorical features
Why not encode each value as an integer?

A naive integer encoding would create an ordering of the feature values that do not exist in the original data 
You can try direct integer encoding if a feature does have a natural ordering (ORDINAL e.g. ECTS grades A–F)

Each value of a categorical feature gets its own column

Status Gender

Single M

Married F

Single O

Single M

Status Singl
e

Status Marri
ed

Gender  M Gender  F Gender  O

1 0 1 0 0

0 1 0 1 0

1 0 0 0 1

1 0 1 0 0
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Convert to a number, preserving the order
[low,medium,high] —> [1,2,3]

Encoding may not capture relative differences

Encoding Ordinal Features

Health Status Blood Pressure

Good Very good

Very Good Excellent

Normal Good

Bad Normal

Health Status Blood Pressure

3 4

4 5

2 3

1 1
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Data Issues
Incorrect feature values 

Typos
e.g., color = {“blue”, “green”, “gren”, “red”}

Garbage
e.g., color = “w�r╍s ́ïį”

Inconsistent spelling (e.g., “color”, “colour”) or capitalization
Inconsistent abbreviations (e.g., “Oak St.”, “Oak Street”) 

Missing labels 
Delete instances if only a few are missing labels
Use semi-supervised learning techniques
Predict the missing labels via self-supervision
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Merging Data
Data may be split across different files

Requires doing a join based on a key to 
combine data into one table 

Problems During Merge 
Inconsistent data 

Same instance key with conflicting labels
Data duplication 

The merged table may be too large for memory 
Encoding issues

Inconsistent data formats or terminology 
Key aspects mentioned in cell comments or auxiliary files
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Treating missing values 
Delete features with mostly missing values (columns)
Delete instances with missing features (rows)

If rare 

Feature imputation methods try to "fill in the blanks"
Variants: 

replacing with a constant
the mean feature value (numerical)
the mode (categorical or ordinal)
“flag” missing values using out of range values

replacing with a random value
predicting the feature value from other features

sepal_lenght sepal_width petal_lenght petal_width Class

5.0 3.3 1.4 0.2 Iris-setosa

7.0 NaN 4.7 1.4 Iris-versicolor

5.7 2.8 4.1 1.3

6.3 NaN 6.0 2.5 Iris-virginica

Data might not be “missing at random” or 
due to technical issues

It might be meaningful that instances have 
missing features!
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What if our features look like this? 
What if the features have different magnitudes? 
Does it matter if a feature is represented as meters 
or millimeters? 
What if there are outliers? 

Values spread strongly affects many models:
linear models (linear SVM, logistic regression, . . . ) 
neural networks
models based on distance or similarity (e.g., kNN ) 

It does not matter for most tree-based predictors
they just consider thresholds of one feature at a time
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Feature Normalisation 
Normalization is needed for many algorithms to work properly

Or to speed up training 

Min/Max scaling
Values scaled between 0 and 1

Standard scaling
Rescales features to have zero mean and unit variance
Outliers can cause problems

Scaling to unit length (typically for document) 

𝑥!"# =
𝑥 − 𝑥$%!

𝑥$&' − 𝑥$%!

𝑥!"# =
𝑥 − 𝜇'
𝜎'

𝑥!"# =
𝑥
|𝑥|
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Other feature transformations 
we may try to improve performance by trying other transformations 

logarithm, square root, . . .
TF-IDF (term frequency–inverse document frequency)

Trial and error, exploration and your intuition 
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Feature Selection and Removal
In some cases, the number of features may be very large leading to several 
problems:

Important information is drowned out
Longer model training time
More complexity ⇒ bad for generalization 

Solution: leave out some features. But which ones?
Feature selection methods can find a useful subset

Idea: find a subspace that retains most of the information about the original data
Pretty much as we were doing with Word embeddings
PRO: fewer dimensions make for datasets that are easier to explore and visualise, 
and faster training of ML algorithms
CONS: drop in prediction accuracy (less information)

There are many different methods, Principal Component Analysis is a classic

Image from: https://arxiv.org/pdf/1703.08893.pdf
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Principal Component Analysis
Sometimes features are highly correlated with each other, therefore 
containing redundant information
Principal components are new features that are constructed as linear 
combinations or mixtures of the initial features

Orthogonal projection of data onto lower-dimension linear space that:
maximizes the variance of projected data (purple line)
minimizes mean squared distance between data point and projections (sum of red 
lines) 

The new features (i.e., principal components) are uncorrelated
Most of the information within the initial features is compressed into the first 
components

1st principal 
component

2nd principal 
component

Direction of the largest 
variance

Orthogonal to all previous 
components

Direction of the largest 
variance in the residual sub-
space

By Nicoguaro - Own work, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=46871195 
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Dimensionality Reduction
Use the PCA transformation of the data instead of the original features

PCA keeps most of the variance of the data
So, we are reducing the dataset to features that retain meaningful variations of the dataset

Ignore the components of less significance (e.g. only pick the first 3 components)



ML Model 
Evaluation
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Cross-Industry Standard Process for Data Mining (CRISP-DM) methodology 

https://www.the-modeling-agency.com/crisp-dm.pdf
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How do machines learn?

Model TrainingTraining Data ML Model Model Enhancement Final ML Model

Evaluation
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Machine Learning Training and Evaluation Process

Training Data
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How to Evaluate?
Metric

How to measure errors?
Both training and testing

Training of Machine Learning 
algorithm

How to “help” the ML model to 
generalise?

Experiment
How to pick the best ML model? 

Training Data

Model training

Model Testing
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Training the model
Gradient descent

Parameter w

Er
ro

r
Er

ro
r

Error Size 
Er

ro
r

Co
st

 

Error

derivative at b

Lecture 4
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Model Training: Error as a Metric
Errors are almost inevitable!

How to measure errors?

We’re generally interested in the following:
How often is the prediction wrong?
How is the prediction wrong?
What is the cost of wrong predictions?
How does the cost vary by the type of prediction that was wrong?
How can we minimize costs? (or regret?)

Select an evaluation procedure (a “metric”)
Ok, but which one?
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Regression
Mean (absolute | squared) error

Absolute: average of the difference between the original values and 
the predicted value

No direction

Squared: average of the square of the difference between the 
original values and the predicted value

Squared is nicer to deal with during the training process 
(derivative)
Larger errors are more pronounced

More sensitive to outliers

𝑀𝐴𝐸 =
1
𝑁
∑
!"#

$
|𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛! − 𝑣𝑎𝑙𝑢𝑒!|

𝑀𝑆𝐸 =
1
𝑁
∑
!"#

$
(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛! − 𝑣𝑎𝑙𝑢𝑒!)%
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Classification
Accuracy

The percentage of times that a model is correct
However,  the model with the highest accuracy is not necessarily 
the best model
Some errors (e.g. False Negative) may be much more expensive 
than others

Usually due to imbalanced trained datasets

Confusion Matrix
Describes the complete performance of the model

Yes No

Yes 50 10

No 40 100

Actual Class

Pr
ed

ic
te

d 
C

la
ss

True Positive

True Negative

False Negative - underestimation
 (Type II Error)

False Positive - false alarm!
(Type I Error)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
#𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

#𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
#𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + #𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

#𝐴𝑙𝑙𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

Yes No
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Not all errors are equal
Depending on your task, different errors have 
different costs

Pregnancy detection
Cost of “false negatives”?
Cost of “false positives”?

Covid testing
Cost of “false negatives”?
Cost of “false positives”?

In law enforcement?

In detecting the “Alexa” command?
In detecting a person on the road?

https://www.wired.com/story/self-driving-cars-
uber-crash-false-positive-negative/

Tesla autopilot: 
https://youtube.com/shorts/tpOg87AQvbo?si=n-F1G0rZuae_pqsV 

https://youtube.com/shorts/tpOg87AQvbo?si=n-F1G0rZuae_pqsV
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Classification
Precision

Among the examples we classified as positive, how many did 
we correctly classify?

Recall (sensitivity)
Among the positive examples, how many did we correctly 
classify?

F1-Score
The harmonic mean between precision (how many 
instances correctly classified), and recall (how many 
relevant instances are correctly classified)

What is the implicit assumption about the costs of 
errors?

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐹# = 2 ∗
1

1
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +

1
𝑅𝑒𝑐𝑎𝑙𝑙
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Classification
Sensitivity (True positive rate)

the capacity of the model to identify the positively labelled 
points
Same as recall

Specificity (False positive rate)
the capacity of the model to identify the negatively 
labeled points
Not the same as precision

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
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The Receiver Operating Characteristic (ROC) curve 

A useful technique to evaluate a model based on its 
performance on false positives and negatives at the 
same time

based on sensitivity and specificity 

It also gives us a way to “explore” model 
performance visually

Trade-off specificity and sensitivity by moving the 
threshold

Se
ns

itiv
ity

 (t
ru

e 
po

sit
ive

 ra
te

)
Specificity (false positive rate)

Random classif
ier

Perfect 
classifier

worse

better
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Some Examples
Medical model: 

Recall and sensitivity: among the sick people (positives), how many were correctly diagnosed as sick? 

Precision: among the people diagnosed as sick, how many were actually sick? 

Specificity: among the healthy people (negatives), how many were correctly diagnosed as healthy? 

Email model: 
Recall and sensitivity: among the spam emails (positives), how many were correctly deleted? 

Precision: among the deleted emails, how many were actually spam? 

Specificity: among the spam emails (negatives), how many were correctly sent to the inbox?
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Choosing Metrics
When a high precision is a hard constraint:

search engine results, grammar correction: Intolerant to FP 
Metric: Prioritize precision over recall

When a high recall is a hard constraint:
medical diagnosis: Intolerant to FN 
Metric: Prioritize recall over precision

When both precision and recall are top priorities:
Automated surveillance systems: intolerant to FP and FN
Metric: F1 score

Capacity constrained (by K) 
Metric: Precision in top-K
What is the precision of the top 3 (K=3) recommendations or results
Relevant in recommender systems and search engines (e.g., Spotify and Google search)
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Model Training: dataset splitting
Split your data 

Training set —> to train the model
(Optional) Validation set —> to decide which model to use 
Test set —> to evaluate the model 

Data

Training

Test

Data

Training

Validation

Test

NEVER use the test set for training —>  That is CHEATING! 

80%

20%

60%

20%

20%
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Model Training: Cross-validation
A way to use all the data for training and testing, by recycling it several times

Split the data in n portions
Train the model n times using n-1 portions for training 

Useful when dataset is small

𝑆𝑐𝑜𝑟𝑒 =
𝑆𝑐𝑜𝑟𝑒# + 𝑆𝑐𝑜𝑟𝑒% + 𝑆𝑐𝑜𝑟𝑒& + 𝑆𝑐𝑜𝑟𝑒'

4
Data
(80%)

Training Training Training Validation

Validation

Validation

TrainingTraining Training

Training TrainingTraining

TrainingTraining TrainingValidation

1

2

3

4

Example: four-fold cross-validation
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No free lunch
There is no one best machine learning algorithm for all 
problems and datasets

Generalization
How well does a trained model generalize from the data it 
was trained on to a new evaluation set? 
Out-of-sampling or (out-of-distribution) testing

Regression

Classification
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Generalisation
Challenge: achieving good generalization and a small error 
rate
Components of expected loss 

Noise in our observations: unavoidable 
Bias: how much the average model differs from the true 
model (i.e., the ideal)

Error due to inaccurate assumptions/simplifications made by 
the model

Variance: how much models trained on different training sets 
differ from each other

Too much sensitivity to the samples à overfitting

Regression

Classification
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Overfitting vs. Underfitting
Protect against overfitting

training a model that too closely matches the idiosyncrasies 
of the training data
model is too “complex” and fits irrelevant characteristics 
(noise) in the data

Low bias and high variance
Low training error and high-test error

Protect against underfitting
training a model that does not adequately capture the 
patterns in the training data
The model is too “simple” to represent all the relevant class 
characteristics

High bias and low variance
High training error and high-test error 

Regression

Classification
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Overfitting vs. Underfitting
Protect against overfitting

training a model that too closely matches the idiosyncrasies 
of the training data
model is too “complex” and fits irrelevant characteristics 
(noise) in the data

Low bias and high variance
Low training error and high-test error

Protect against underfitting
training a model that does not adequately capture the 
patterns in the training data
The model is too “simple” to represent all the relevant class 
characteristics

High bias and low variance
High training error and high-test error 



62https://en.wikipedia.org/wiki/Bias–variance_tradeoff#/media/File:Bias_and_variance_contributing_to_total_error.svg
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Tuning Hyperparameters
Inputs to the learning algorithms that control their behaviour 

Examples:
maximum tree depth in decision trees 
number of neighbours k in k-nearest neighbour
Neural networks: architecture, learning rate, etc.

For a model to work well, they often need to be tuned carefully
Huge search space! may be inefficient to search exhaustively

Possible approaches
Grid search: brute-force exhaustive search among a finite set of 
hyperparameter settings 

All combinations are tried, then the best setting selected 
Random search: for each hyperparameter, define a distribution (e.g. 
normal, uniform)

In the search loop, we sample randomly from these distributions https://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a

DON’T optimise these numbers by looking at the test set!  That is CHEATING! 
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Double Cross-Validation
To optimise over the hyperparameter do cross-validation inside another cross-validation
The minimum error is often not the most interesting. Try to understand the advantages/disadvantages  

What errors are made? (inspect objects, inspect labels) 
What classes are problematic? (confusion matrix) 
Does adding training data help? (learning curve) 
How robust is the model? 
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Sources
CIS 419/519 Applied Machine Learning. Eric Eaton, Dinesh Jayaraman. 
https://www.seas.upenn.edu/~cis519/spring2020/
EECS498: Conversational AI. Kevin Leach. https://dijkstra.eecs.umich.edu/eecs498/
CS 4650/7650: Natural Language Processing. Diyi Yang. 
https://www.cc.gatech.edu/classes/AY2020/cs7650_spring/
Natural Language Processing. Alan W Black and David Mortensen. http://demo.clab.cs.cmu.edu/NLP/
IN4325 Information Retrieval. Jie Yang. 
Speech and Language Processing, An Introduction to Natural Language Processing, Computational 
Linguistics, and Speech Recognition. Third Edition. Daniel Jurafsky, James H. Martin.
Natural Language Processing, Jacob Eisenstein, 2018.
A Step-by-Step Explanation of Principal Component Analysis (PCA). https://builtin.com/data-science/step-
step-explanation-principal-component-analysis

https://www.seas.upenn.edu/~cis519/spring2020/
https://dijkstra.eecs.umich.edu/eecs498/
http://demo.clab.cs.cmu.edu/NLP/
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